Abstract
The trace amine β-phenylethylamine (PEA) is normally present in the body at low nanomolar concentrations but can reach micromolar levels after ingestion of drugs that inhibit monoamine oxidase and primary amine oxidase. In vivo, PEA elicits a robust pressor response, but there is no consensus regarding the underlying mechanism, with both vasodilation and constriction reported in isolated blood vessels. Using functional and biochemical approaches, we found that at low micromolar concentrations PEA (1–30 μM) enhanced nerve-evoked vasoconstriction in the perfused rat mesenteric bed but at a higher concentration (100 μM) significantly inhibited these responses. The α2-adrenoceptor antagonist rauwolscine (1 µM) also enhanced nerve-mediated vasoconstriction, but in the presence of both rauwolscine (1 µM) and PEA (30 µM) together, nerve-evoked responses were initially potentiated and then showed time-dependent rundown. PEA (10 and 100 μM) significantly increased noradrenaline outflow from the mesenteric bed as determined by high-pressure liquid chromatography coupled with electrochemical detection. In isolated endothelium-denuded arterial segments, PEA (1 µM to 1 mM) caused concentration-dependent reversal of tone elicited by the α1-adrenoceptor agonists noradrenaline (EC50 51.69 ± 10.8 μM; n = 5), methoxamine (EC50 68.21 ± 1.70 μM; n = 5), and phenylephrine (EC50 67.74 ± 16.72 μM; n = 5) but was ineffective against tone induced by prostaglandin F2α or U46619 (9,11-dideoxy-9α,11α-methanoepoxyprostaglandin F2α). In rat brain homogenates, PEA displaced binding of both [3H]prazosin (Ki ≈ 25 μM) and [3H]rauwolscine (Ki ≈ 1.2 μM), ligands for α1- and α2-adrenoceptors, respectively. These data provide the first demonstration that dual indirect sympathomimetic and α1-adrenoceptor blocking actions underlie the vascular effects of PEA in resistance arteries.
Footnotes
- Received May 15, 2014.
- Accepted August 8, 2014.
↵1 Current affiliation: Faculty of Health and Community Studies, MacEwan University, Robbins Health Learning Centre, Edmonton, Alberta, Canada.
This work was supported by the Canadian Institutes of Health Research [MOP77529 (to A.H.); MOP 37945 (to P.E.L.)]; and the Heart and Stroke Foundation of Canada [GIA G-13-0003076 (to F.P.)]. D.N. was a recipient of a University of Alberta Faculty of Medicine and Dentistry 75th anniversary award and a University of Alberta QEII award; J.S. and R.B. received Summer Student Awards from the Office of the Provost and VP (academic) at the University of Alberta; and P.E.L. is an Alberta Innovates Health Solutions Senior Scholar and holds the Dr. Charles A. Allard Chair in Diabetes Research.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|