Abstract
Concomitant i.v. use of cocaine and heroin ("speedballing") is prevalent among drug-abusing populations. Heroin is rapidly metabolized by sequential deacetylation of two separate ester bonds to yield 6-monoacetylmorphine and morphine. Hydrolysis of heroin to 6-monoacetylmorphine is catalyzed by pseudocholinesterase. The pathway for hydrolysis of 6-monoacetylmorphine to morphine in vivo has yet to be established. Pseudocholinesterase and two human liver carboxylesterases [human liver carboxylesterase form 1 (hCE-1) and human liver carboxylesterase form 2 (hCE-2)] catalyze the rapid hydrolysis of ester linkages in cocaine. This investigation examined the relative catalytic efficiencies of hCE-1, hCE-2 and pseudocholinesterase for heroin metabolism and compared them with cocaine hydrolysis. Enzymatic formation of 6-monoacetylmorphine and morphine was determined by reverse-phase high-performance liquid chromatography. All three enzymes rapidly catalyzed hydrolysis of heroin to 6-monoacetylmorphine (hCE-1 kcat = 439 min-1, hCE-2 kcat = 2186 min-1 and pseudocholinesterase kcat = 13 min-1). The catalytic efficiency, under first-order conditions, for hCE-2-catalyzed formation of 6-monoacetylmorphine (314 min-1 mM-1) was much greater than that for either hCE-1 or pseudocholinesterase (69 and 4 min-1 mM-1, respectively). Similarly, the catalytic efficiency for hydrolysis of 6-monoacetylmorphine to morphine by hCE-2 (22 min-1 mM-1) was substantially greater than that for hCE-1 (0.024 min-1 mM-1). Cocaine competitively inhibited hCE-1-, hCE-2- and pseudocholinesterase-catalyzed hydrolysis of heroin to 6-monoacetylmorphine (Ki = 530, 460 and 130 microM, respectively) and 6-monoacetylmorphine hydrolysis to morphine (Ki = 710, 220 and 830 microM, respectively). These data demonstrate that metabolism of cocaine and heroin in humans is mediated by common metabolic pathways. The role of hepatic hCE-2 is particularly important for the hydrolysis of heroin to 6-monoacetylmorphine and of 6-monoacetylmorphine to morphine.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|