Abstract
This investigation assessed the ability of a variety of calcium channel blocking peptides to block synaptic transmission in the isolated mouse phrenic nerve-hemidiaphragm. The synthetic version of the naturally occurring N-type voltage-sensitive calcium channel (VSCC) blocker omega-conopeptide MVIIA (SNX-111) had no effect on nerve-evoked muscle contractions. The non-N-, non-L-type VSCC blocker, omega-conopeptide MVIIC (SNX-230), blocked neuromuscular transmission completely, as did the selective P-type VSCC blocker, omega-Aga-IVA. Subsequent evaluation of other synthetic omega-conopeptides and analogs disclosed a significant positive correlation between the test compounds' affinities for high-affinity SNX-230 brain binding sites and their neuromuscular blocking potencies. Quantal analysis of transmitter release showed that SNX-230 abolished evoked endplate potentials completely, but had little effect on the amplitude and frequency of spontaneous miniature endplate potentials. Perineural focal recordings of presynaptic currents showed that SNX-230 did not block the neuronal action potential. These and other findings indicated that SNX-230 prevents transmitter release at the mouse neuromuscular junction by blocking calcium channels at presynaptic nerve endings. These calcium channels correspond pharmacologically to VSCCs associated with high-affinity binding sites in rat brain and are most probably either of the P- or Q-type.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|