Abstract
In the present study, we examined the binding of the alpha-2 adrenergic receptor (AR) antagonist [3H]-(2-(2-methoxy-1,4-benzodioxan- 2yl)-2-imidazoline ([3H]RX821002) to alpha-2 AR in rat cerebral cortex (CC) and compared the properties of these sites to those of rat alpha-2A (R alpha-2A) AR in submaxillary gland (SMG), human alpha-2A (H alpha-2A) AR in human platelets and alpha-2B AR in neonatal rat lung. In the presence of guanidinium phosphate, [3H]RX821002 bound with high affinity to a large and homogeneous population of sites in CC (Kd = 0.30 +/- 0.03 nM and Bmax = 271 +/- 7 fmol/mg of protein), SMG (Kd = 0.7 and Bmax = 274), human platelets (Kd = 0.6 nM and Bmx = 189) and neonatal rat lung (kd = 0.9 and Bmax = 161). A total of 34 chemically diverse AR ligands monophasically inhibited the binding of [3H]RX821002 from each site with, for the CC, the most potent ligand being atipamezole (Ki = 0.2 nM). For all ligands, and at each site, Hill coefficients did not differ significantly from unity. Although the profiles of inhibition of [3H]RX821002 were virtually identical in rat CC and SMG, these populations revealed several marked differences to human platelets; the alkaloids, rauwolscine and yohimbine, as well as the benzodioxane, [2-(2,6- dimethoxyphenoxyethyl)-aminomethyl-1,4-benzodioxane] (WB 4101), displayed about 10-fold lower affinity for R alpha-2A as compared to H alpha-2A sites, whereas the benzopyrrolidines, fluparoxan and des-fluorofluparoxan, showed about 10-fold greater affinity for R alpha-2A sites. Further, whereas the calculation of potency ratios for selected pairs of ligands, as well as of correlation coefficients, revealed virtual identity between R alpha-2A AR in CC and SMG, these analyses revealed that each of these populations of R alpha-2A AR clearly differed to H alpha-2A AR in human platelets. In addition, both R alpha-2A AR in rat CC and SMG as well as H alpha-2A AR in human platelets markedly differed to alpha-2B AR in neonatal rat lung; thus, they showed 20-fold higher affinity for [2-(2H-(1-methyl-1,3-dihydroisoindole)methyl)-4,5- dihydroimidazoline] (BRL 44408), oxymetazoline, guanfacine and guanabenz yet 10- to 100-fold lower affinity for [2-(2-4-o- methoxyphenyl)piperazine-1-yl)-ethyl)-4,4-dimethyl-1,3-(2H,4H)- isoquinolinedione] (ARC 239) prazosin, chlorpromazine and corynanthine. Similar differences in R alpha-2A and H alpha-2A sites to alpha-2C sites were apparent upon analysis of literature data.(ABSTRACT TRUNCATED AT 400 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|