Abstract
Discovered as inhibitory autoreceptors in central histaminergic pathways, histamine H3-receptors may also modulate peripheral cholinergic and central adrenergic function. Recently, H3-receptors were reported to inhibit adrenergic inotropic responses in guinea pig atria, possibly at prejunctional sites. We have assessed whether the H3-mediated modulation of cardiac adrenergic activities results from a reduction in norepinephrine release. We have found that (R) alpha-methylhistamine, the selective histamine H3-receptor agonist, attenuates the inotropic and chronotropic response of isolated guinea pig atria to transmural stimulation of adrenergic nerve endings. This attenuation was associated with a marked reduction in endogenous norepinephrine release. In contrast (R) alpha-methylhistamine did not modify the chronotropic effect of exogenous norepinephrine. The attenuation of adrenergic responses by (R) alpha-methylhistamine was 1) prevented by thioperamide, the selective H3-receptor antagonist; 2) attenuated by pertussis-toxin pretreatment and 3) potentiated by the N-type Ca(++)-channel blocker omega-conotoxin, which also potentiated the sympathetic modulatory effects of adrenergic-alpha 2 and adenosine-A1 receptor agonists. Our findings indicate that prejunctional histamine H3-receptors modulate the depolarization-dependent norepinephrine release from sympathetic nerve endings in the guinea pig myocardium. These receptors are probably coupled to a pertussis-toxin-sensitive Gi/Go protein and probably effect a reduction in Ca++ current. We have previously reported that sympathetic stimulation elicits a frequency-dependent release of cardiac histamine, whereas others had found that adrenergic activity regulates histamine's rapid turnover pool. Accordingly, presynaptic H3-receptors are likely to serve a modulatory role in cardiac adrenergic function.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|