Abstract
Anti-IgE at a fixed dilution (1:1000) contracted human airways that had been pretreated with atropine (1 microM), indomethacin (3 microM) and chlorpheniramine (1 microM). This response was blocked by the potent leukotriene synthesis inhibitor BAY x 1005 ((R)-2-[4-(Quinolin-2-yl-methoxy)phenyl)-2-cyclopentyl acetic acid]. The leukotriene synthesis inhibitor MK-886 also blocked the contraction, but BAY x1005 was approximately 10-fold more potent than MK-886 (the IC50 values were 0.27 microM and 3.4 microM for BAY x1005 and MK-886, respectively). BAY x1005 (1 microM) did not alter LTD4 cumulative concentration-effect curves on human airways. Bronchial muscles derived from different levels of the respiratory tract released small quantities of LTE4 (proximal, 7.99 +/- 1.25 ng/g tissue wet wt.; distal, 13.12 +/- 4.46 ng/g tissue wet wt.). These basal levels were significantly increased when the preparations were challenged with a fixed dilution (1:1000) of anti-IgE (proximal, 21.84 +/- 5.33 ng/g tissue wet wt.; distal 72.13 +/- 30.70 ng/g tissue wet wt.). Indomethacin (3 microM) did not alter either the basal amounts or the levels of LTE4 measured during anti-IgE stimulation. However, BAY x1005 or MK-886 in the presence of indomethacin prevented the increase in LTE4 levels that were observed during anti-IgE challenge. In these protocols the IC50 values obtained were 0.18 microM and 1.42 microM for BAY x1005 and MK-886, respectively. These data demonstrate that BAY x1005 is a potent leukotriene synthesis inhibitor in human airways.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|