Abstract
The effects of forskolin, an activator of adenylate cyclase, on cytoplasmic Ca++ level ([Ca++]cyt) measured simultaneously with muscle tension using fura-2-Ca++ fluorescence were examined in isolated smooth muscle of rat aorta. Forskolin decreased muscle tension and [Ca++]cyt in resting aorta whereas both norepinephrine and high K+ solution produced sustained increase in muscle tension and [Ca++]cyt. Addition of forskolin during the sustained contractions decreased muscle tension more strongly than [Ca++]cyt. Norepinephrine-induced contraction was more sensitive to forskolin than high K+-induced contraction. The inhibitory effect of forskolin was attenuated when the concentration of norepinephrine or K+ was increased. Cumulative addition of norepinephrine or K+ induced a concentration-dependent increase in both [Ca++]cyt and muscle tension and a positive [Ca++]cyt-tension correlation was observed. In the presence of 0.1 microM forskolin, the norepinephrine-induced increments in [Ca++]cyt and muscle tension were inhibited without changing the [Ca++]cyt-tension relationship. In the presence of a higher concentration (1 microM) of forskolin, muscle tension was inhibited more strongly with only a small additional decrease in [Ca++]cyt resulting in a shift of the [Ca++]cyt-tension relationship. Norepinephrine induced transient increments in [Ca++]cyt and muscle tension in Ca++-free solution and forskolin inhibited these changes. These results suggest that forskolin has concentration-dependent inhibitory effects on vascular contractility to decrease [Ca++]cyt at lower concentrations and to decrease the sensitivity of contractile elements to Ca++ at higher concentrations.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|