Abstract
The characteristics of the transport of cefixime, a new p.o. cephalosporin, antibiotic, were studied by using brush-border membrane vesicles from the rat small intestine. The initial rate of uptake of cefixime was not affected by the presence of an inward gradient of either Na+ or other monovalent cations. With an intravesicular pHi of 7.5, optimal cefixime uptake occurred at an extravesicular pHo of 5.0, with about 6-fold acceleration compared with that in the absence of an inward proton gradient (pHi = pHo = 7.5). A protonophore, carbonyl-cyanide-4-trifluoromethoxy-phenylhydrazone, abolished the stimulating effect of low pHo. In the presence of a sufficient inward proton gradient (pHi = 7.5, pHo = 5.0), cefixime uptake showed an overshoot phenomenon and apparent saturation kinetics expressed by the Michaelis-Menten equation with the maximum rate of 2.67 +/- 0.06 nmol/30 sec/mg of protein and a Michaelis constant of 0.83 +/- 0.04 mM. Cefixime uptake was inhibited competitively by glycyl-L-proline and stimulated by the countertransport effect of this dipeptide. The other peptides also inhibited cefixime uptake significantly. A valinomycin-induced inside-negative K+-diffusion potential had a dramatic reducing effect on the uptake of dianionic cefixime. All the data obtained in this study demonstrate that cefixime transport across the brush-border membrane vesicles is carrier-mediated, independent of Na+ and dependent on a H+ gradient via the peptide transport systems.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|