Abstract
The muscle relaxant carisoprodol has recently been controlled at the federal level as a Schedule IV drug due to its high abuse potential and consequences of misuse, such as withdrawal syndrome, delusions, seizures, and even death. Recent work has shown that carisoprodol can directly gate and allosterically modulate the type A GABA (GABAA) receptor. These actions are subunit-dependent; compared with other GABAA receptors, carisoprodol has nominal direct gating effects in α3β2γ2 receptors. Here, using site-directed mutagenesis and whole-cell patch-clamp electrophysiology in transiently transfected human embryonic kidney 293 cells, we examined the role of GABAA receptor α subunit transmembrane domain 4 (TM4) amino acids in direct gating and allosteric modulatory actions of carisoprodol. Mutation of α3 valine at position 440 to leucine (present in the equivalent position in the α1 subunit) significantly increased the direct gating effects of carisoprodol without affecting its allosteric modulatory effects. The corresponding reverse mutation, α1(L415V), decreased carisoprodol direct gating potency and efficacy. Analysis of a series of amino acid mutations at the 415 position demonstrated that amino acid volume correlated positively with carisoprodol efficacy, whereas polarity inversely correlated with carisoprodol efficacy. We conclude that α1(415) of TM4 is involved in the direct gating, but not allosteric modulatory, actions of carisoprodol. In addition, the orientation of alkyl or hydroxyl groups at this position influences direct gating effects. These findings support the likelihood that the direct gating and allosteric modulatory effects of carisoprodol are mediated via distinct binding sites.
Footnotes
- Received April 11, 2017.
- Accepted June 14, 2017.
↵1 Current affiliation: Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.
This research was supported by the National Institutes of Health National Institute on Drug Abuse [Grant R01-DA022370 (to G.H.D.)] and the National Institutes of Health National Institute of General Medical Sciences [Grant U54-GM104942].
- Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|