Abstract
Marijuana substitutes often contain blends of multiple psychoactive synthetic cannabinoids (SCBs), including the prevalent SCBs (1-pentyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-018) and (1-butyl-1H-indole-3-yl)-1-naphthalenyl-methanone (JWH-073). Because SCBs are frequently used in combinations, we hypothesized that coadministering multiple SCBs induces synergistic drug–drug interactions. Drug–drug interactions between JWH-018 and JWH-073 were investigated in vivo for Δ9-tetrahydrocannabinol (Δ9-THC)-like discriminative stimulus effects, analgesia, task disruption, and hypothermia. Combinations (JWH-018:JWH-073) of these drugs were administered to mice in assays of Δ9-THC discrimination, tail-immersion, and food-maintained responding, and rectal temperatures were measured. Synergism occurred in the Δ9-THC discrimination assay for two constant dose ratio combinations (1:3 and 1:1). A 1:1 and 2:3 dose ratio induced additivity and synergy, respectively, in the tail-immersion assay. Both 1:1 and 2:3 dose ratios were additive for hypothermia, whereas a 1:3 dose ratio induced subadditive suppression of food-maintained responding. In vitro drug–drug interactions were assessed using competition receptor-binding assays employing mouse brain homogenates and cannabinoid 1 receptor (CB1R)-mediated inhibition of adenylyl cyclase activity in Neuro2A wild-type cells. Interestingly, synergy occurred in the competition receptor-binding assay for two dose ratios (1:5 and 1:10), but not in the adenylyl cyclase activity assay (1:5). Altogether, these data indicate that drug–drug interactions between JWH-018 and JWH-073 are effect- and ratio-dependent and may increase the relative potency of marijuana substitutes for subjective Δ9-THC–like effects. Combinations may improve the therapeutic profile of cannabinoids, considering that analgesia but not hypothermia or task disruption was potentiated. Importantly, synergy in the competition receptor–binding assay suggests multiple CB1R-SCB binding sites.
Footnotes
- Received April 25, 2013.
- Accepted June 24, 2013.
This work was supported by the University of Arkansas for Medical Sciences Translational Research Institute [Grant RR029884]; and the University of Arkansas for Medical Sciences Center for Translational Neuroscience [Grant RR020146].
This work was presented, in part, in L.K.B.'s doctoral dissertation defense as follows: Brents LK (2013) Active Metabolites and Drug-Drug Interactions of the Synthetic Cannabinoids JWH-018 and JWH-073 at the Cannabinoid 1 Receptor. Doctoral dissertation, University of Arkansas, Little Rock, AR.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|