Abstract
Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model. The present study was undertaken to test the hypothesis that reversal of the phenotype of activated hepatic stellate cells (HSCs) contributes to the fibrinolysis effect of MT. Human HSC LX-2 cells were activated after they were cultured for 24 hours, as indicated by expression of α-smooth muscle actin (α-SMA) and collagen-I and depressed expression of collagenases. Transfection with a plasmid containing human MT-IIA gene in the activated HSCs effectively increased the protein level of MT. The expression of MT was accompanied by the reduction in protein levels of α-SMA and collagen-I and a decrease in their mRNA levels. Of importance, MT gene transfection resulted in upregulation of matrix metalloproteinases 1, 8, and 13, which are involved in the resolution of liver fibrosis. This study demonstrates that reversal of the phenotype of activated HSCs, particularly the upregulation of collagenases, is likely to be involved in the resolution of liver fibrosis observed in MT gene therapy.
Footnotes
- Received March 12, 2013.
- Accepted April 15, 2013.
X.X. and F.S. contributed equally to this study.
This study was supported by Sichuan University West China Hospital.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|