Abstract
Despite the importance of UDP-glucuronosyltransferase (UGT) 1A1*28 in irinotecan pharmacogenetics, our capability to predict drug-induced severe toxicity remains limited. We aimed at identifying novel genetic markers that would improve prediction of irinotecan toxicity and response in advanced colorectal cancer patients treated with folic acid (leucovorin), fluorouracil (5-FU), and irinotecan (camptosar)-based regimens. The relationships between UGT1A candidate markers across the gene (n = 21) and toxicity were prospectively evaluated in 167 patients. We included variants in the 3′untranscribed region (3′UTR) of the UGT1A locus, not studied in this context yet. These genetic markers were further investigated in 250 Italian FOLFIRI-treated patients. Several functional UGT1A variants, including UGT1A1*28, significantly influenced risk of severe hematologic toxicity. As previously reported in the Italian cohort, a 5-marker risk haplotype [haplotype II (HII); UGTs 1A9/1A7/1A1] was associated with severe neutropenia in our cohort [odds ratio (OR) = 2.43; P = 0.004]. The inclusion of a 3′UTR single-nucleotide polymorphism (SNP) permitted refinement of the previously defined HI, in which HIa was associated with the absence of severe neutropenia in combined cohorts (OR = 0.55; P = 0.038). Among all tested UGT1A variations and upon multivariate analyses, no UGT1A1 SNPs remained significant, whereas three SNPs located in the central region of UGT1A were linked to neutropenia grade 3–4. Haplotype analyses of these markers with the 3′UTR SNP allowed the identification of a protective HI (OR = 0.50; P = 0.048) and two risk haplotypes, HII and HIII, characterized by 2 and 3 unfavorable alleles, respectively, revealing a dosage effect (ORs of 2.15 and 5.28; P ≤ 0.030). Our results suggest that specific SNPs in UGT1A, other than UGT1A1*28, may influence irinotecan toxicity and should be considered to refine pharmacogenetic testing.
Footnotes
- Received December 5, 2012.
- Accepted January 31, 2013.
This work was supported by the Canadian Institutes of Health Research [CIHR MOP-42392] (to C.G.); and Canada Research Chair Program (to C.G.). E.L. is a recipient of a CIHR clinician-scientist salary award. A.-S.B. was a recipient of a CIHR Frederick Banting and Charles Best studentship award. C.G. is the Canada Research Chair in Pharmacogenomics.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|