Abstract
Inhibition of cell proliferation by fenoterol and fenoterol derivatives in 1321N1 astrocytoma cells is consistent with β2-adrenergic receptor (β2-AR) stimulation. However, the events that result in fenoterol-mediated control of cell proliferation in other cell types are not clear. Here, we compare the effect of the β2-AR agonists (R,R′)-fenoterol (Fen) and (R,R′)-4-methoxy-1-naphthylfenoterol (MNF) on signaling and cell proliferation in HepG2 hepatocarcinoma cells by using Western blotting and [3H]thymidine incorporation assays. Despite the expression of β2-AR, no cAMP accumulation was observed when cells were stimulated with isoproterenol or Fen, although the treatment elicited both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt activation. Unexpectedly, isoproterenol and Fen promoted HepG2 cell growth, but MNF reduced proliferation together with increased apoptosis. The mitogenic responses of Fen were attenuated by 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118,551), a β2-AR antagonist, whereas those of MNF were unaffected. Because of the coexpression of β2-AR and cannabinoid receptors (CBRs) and their impact on HepG2 cell proliferation, these Gαi/Gαo-linked receptors may be implicated in MNF signaling. Cell treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a synthetic agonist of CB1R and CB2R, led to growth inhibition, whereas inverse agonists of these receptors blocked MNF mitogenic responses without affecting Fen signaling. MNF responses were sensitive to pertussis toxin. The β2-AR-deficient U87MG cells were refractory to Fen, but responsive to the antiproliferative actions of MNF and WIN 55,212-2. The data indicate that the presence of the naphthyl moiety in MNF results in functional coupling to the CBR pathway, providing one of the first examples of a dually acting β2-AR-CBR ligand.
Footnotes
This research was supported in part by the Intramural Research Program of the National Institutes of Health and the National Institutes of Health National Institute on Aging under Contract N01AG-3-1009.
Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.
↵ The online version of this article (available at http://jpet.aspetjournals.org) contains supplemental material.
ABBREVIATIONS:
- Fen
- (R,R′)-fenoterol
- β2-AR
- β2-adrenergic receptor
- MNF
- (R,R′)-4-methoxy-1-naphthylfenoterol
- WIN 55,212-2
- (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone
- AM251
- 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide
- AM630
- 1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole
- ICI 118,551
- 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol
- CBR
- cannabinoid receptor
- ERK
- extracellular-regulated kinase
- GPCR
- G protein-coupled receptor
- NF
- naphthylfenoterol
- IBMX
- 3-isobutyl-1-methylxanthine
- MRP
- multidrug resistance protein
- PBS
- phosphate-buffered saline
- FBS
- fetal bovine serum
- PCR
- polymerase chain reaction
- siRNA
- short interfering RNA
- PI
- propidium iodide
- Iso
- isoproterenol.
- Received April 4, 2012.
- Accepted July 6, 2012.
- U.S. Government work not protected by U.S. copyright
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|