Abstract
The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis. Immunohistochemical staining in RVECs showed that rOat3 is colocalized with glucose transporter 1, but not P-glycoprotein, suggesting that rOat3 is possibly located at the abluminal membrane of the RVEC. The contribution of rOat3 to the efflux of [3H]p-aminohippuric acid ([3H]PAH), [3H]benzylpenicillin ([3H]PCG), and [14C]6-mercaptopurine ([14C]6-MP), substrates of rOat3, from the vitreous humor/retina to the circulating blood across the inner BRB was evaluated using the microdialysis method. [3H]PAH, [3H]PCG, [14C]6-MP, and [14C] or [3H]d-mannitol, a bulk flow marker, were biexponentially eliminated from the vitreous humor after vitreous bolus injection. The elimination rate constant of [3H]PAH, [3H]PCG, and [14C]6-MP during the terminal phase was approximately 2-fold greater than that of d-mannitol. This efflux transport was reduced in the retinal presence of probenecid, PAH, and PCG, whereas it was not inhibited by digoxin. In conclusion, rOat3 is expressed at the inner BRB and involved in the vitreous humor/retina-to-blood transport of PAH, PCG, and 6-MP. This transport system is one mechanism to limit the retinal distribution of PAH, PCG, and 6-MP.
Footnotes
-
This work was supported by the Japan Society for the Promotion of Science grant-in-aid for Scientific Research.
-
doi:10.1124/jpet.108.146381.
-
ABBREVIATIONS: BRB, blood-retinal barrier; Oatp, organic anion transporter polypeptide; Oat, organic anion transporter; PAH, p-aminohippuric acid; PCG, benzylpenicillin; 6-MP, 6-mercaptopurine; RT, reverse transcription; PCR, polymerase chain reaction; RVEC, retinal vascular endothelial cell; r, rat; GLUT, glucose transporter; BSP, sulfobromophthalein; ABC, ATP-binding cassette; MRP, multidrug resistance protein.
- Received September 18, 2008.
- Accepted December 29, 2008.
- The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|