Abstract
We studied the effects of acidic pH on the currents through voltage-gated K+ channels, Kv1.2, Kv1.4, and their tandem construct (Kv1.4-Kv1.2). Kv1.4 currents were inhibited considerably under acidic pH in a voltage-independent manner, whereas Kv1.2 currents were less inhibited in an apparently voltage-dependent manner. The apparent voltage-dependent block of Kv1.2 currents was mostly ascribed to the shift of activation voltage, which is probably due to surface charge effects of H+ ions. Mutagenesis analysis identified the histidine residue at 508 (H508) in the S5-H5 linker as a molecular determinant of pH sensitivity of Kv1.4. Currents through the tandem channel showed intermediate characteristics between the two parent channels in both sensitivity and voltage dependence of pH effects. Our results suggest that 1) the H508 plays a critical role in determining pH sensitivity of Kv1.4; and 2) the two parent channels, Kv1.2 and Kv1.4, are involved in determining pH sensitivity and apparent voltage dependence of the tandem channel.
Footnotes
- Received July 13, 2000.
- Accepted October 10, 2000.
-
Send reprint requests to: Dr. Kuniaki Ishii, Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan. E-mail: kuishii{at}med.id.yamagata-u.ac.jp
-
This study was supported by Grants-in Aid for Scientific Research (09557210 and 10470021) from the Ministry of Education, Science, Sports and Culture, Japan.
- The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|