Abstract
The effect of 2-methyl-4a alpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12a alpha-octahydroquinolino [2,3,3,-g]isoquinoline (TAN-67), a selective non-peptide delta opioid receptor agonist, on the morphine-induced place preference was examined in mice. Morphine (1-5 mg/kg, s.c.) produced a dose-related place preference in mice. In contrast, administration of TAN-67 (5-20 mg/kg, s.c.) did not result in a preference for either the drug- or vehicle-associated place. When TAN-67 (5-20 mg/kg, s.c.) was coadministered with morphine (1 mg/kg, s.c.), the morphine-induced place preference was enhanced dose dependently, and this effect of TAN-67 was suppressed by the pretreatment with naltrindole (1 mg/kg, s.c.), a nonselective delta opioid receptor antagonist, 7-benzylidenenaltrexone (0.05 and 0.5 mg/kg, s.c.), a selective delta 1 opioid receptor antagonist, and naltriben (0.05 and 0.5 mg/kg, s.c.), a selective delta 2 opioid receptor antagonist. In biochemical study, morphine (1 mg/kg, s.c.) or TAN-67 (20 mg/kg, s.c.) alone did not modify dopamine turnover in the limbic forebrain. Coadministration of TAN-67 (20 mg/kg, s.c.) with morphine (1 mg/kg, s.c.) increased DA turnover in the limbic forebrain. This increase in DA turnover in the limbic forebrain was suppressed by pretreatment with naltrindole (1 mg/kg, s.c.) or 7-benzylidenenaltrexone (0.5 mg/kg, s.c.), but not by naltriben (0.5 mg/kg, s.c.). Our results demonstrate that coadministration of TAN-67 with morphine enhances the morphine-induced place preference via activation of both delta 1 and delta 2 opioid receptors, suggesting that both delta 1 and delta 2 opioid receptors may modulate the morphine-induced rewarding effect. In addition, we also found that although both delta 1 and delta 2 opioid receptors may be implicated in the modulation of rewarding effect of morphine, the mechanisms involved may be different for each receptor subtypes, i.e., mu-delta 1 interaction may mainly modulate the rewarding effect of morphine by enhancing neurotransmission of mesolimbic dopamine neurons, although modulation by mu-delta 2 opioid receptor interaction may involve some other dopamine-independent mechanisms.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|