Abstract
Naloxone (0.3-9 mumol kg-1), electrical stimulation of locus ceruleus or clonidine at low doses (7.5-112 nmol kg-1) increased the release of acetylcholine from the exposed parietal cortex of freely moving, morphine-tolerant guinea pigs. This increase was not additive and was prevented by prazosin (35.8 nmol kg-1), suggesting the involvement of alpha-1 receptors. At high doses (374 nmol kg-1 or more) clonidine inhibited acetylcholine release through alpha-2 receptors, as it did in naive animals at 7.5 nmol kg-1. Clonidine (374 nmol kg-1) and prazosin (35.8 nmol kg-1) reduced the objective signs of naloxone-precipitated withdrawal. Electrical stimulation of the locus ceruleus or naloxone treatment reduced the release of gamma-aminobutyric acid (GABA) from the exposed parietal cortex of morphine-tolerant guinea pigs. This reduction was not additive and was prevented by idazoxan (84 nmol kg-1), suggesting the involvement of alpha-2 receptors. Clonidine (7.5 nmol kg-1), too, reduced the release of GABA in morphine-tolerant animals. However, when tested jointly with naloxone, clonidine (7.5-112 nmol kg-1) induced alpha-1-mediated facilitation of GABA release (like that elicited in naive animals at 112-374 nmol kg-1) leaving the signs of withdrawal unchanged. This points to the stimulation of alpha-1 receptors highly responsive to this agonist (but not to locus ceruleus stimulation) during naloxone-precipitated withdrawal. In conclusion, chronic morphine treatment modifies the alpha-1- and alpha-2-mediated control of GABA and acetylcholine neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|