Abstract
Repeated administration of the centrally acting beta adrenoceptor agonist, clenbuterol, to rats reduced the ability of isoproterenol to increase the concentration of cyclic AMP (cAMP) in slices of cerebellum. This reduced responsiveness to isoproterenol was accompanied by a marked reduction in the density of beta adrenoceptors as measured by the binding of the beta adrenoceptor antagonist [125I]iodopindolol. In addition, the agonist-binding properties of remaining cerebellar beta adrenoceptors were altered after clenbuterol treatment. The clenbuterol-induced reduction in the density of beta adrenoceptors in the cerebellum is in marked contrast to its inability to do this in cerebral cortex. Comparison of the ability of clenbuterol to that of isoproterenol to increase levels of cAMP in slices of cerebral cortex or cerebellum showed that clenbuterol is a weakly potent agonist in both brain regions. The increase in cAMP induced by isoproterenol in the cortex was significantly reduced in the presence of the selective beta-1 adrenoceptor antagonist, ICI 89,406. In contrast, the clenbuterol-induced increase in cortical cAMP was unchanged by ICI 89,406 but was reduced significantly by the beta-2 adrenoceptor antagonist, ICI 118,551. In cerebellum, both isoproterenol- and clenbuterol-stimulated accumulation of cAMP were antagonized much more potently by ICI 118,551 than by ICI 89,406. Furthermore, clenbuterol antagonized the cAMP response induced by isoproterenol in the presence of ICI 118,551 in a concentration-dependent manner. In terms of measurement of cAMP in brain slices, clenbuterol is weakly potent as an agonist at beta-2 adrenoceptors and has antagonist properties at beta-1 adrenoceptors.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|