Abstract
In mouse right ventricular strips, field-stimulated to contract isometrically in an oxygenated bicarbonate-buffered physiological salt solution at 22--24 degrees C, the EC50 for the inotropic action of isoproterenol decreased from 37 nM in muscles stimulated at 0.2 Hz to 5 nM in muscles stimulated at 3.3 Hz. At higher rates of contraction, there was also an increased sensitivity to the inotropic actions of norepinephrine and epinephrine but not to those of Ca++ and N6,O2'-dibutyryl cyclic AMP. Increasing the Ca++ concentration further decreased the EC50 for isoproterenol at 3.3 Hz but had no effect on the EC50 at 0.2 Hz. The leftward shift of the contractile response curve at 3.3 Hz was inhibited by verapamil (0.6 microM) and Mn++ (0.25 mM). The stimulation of cyclic AMP accumulation was approximately 6-fold more sensitive to isoproterenol at 3.3 than at 0.2 Hz, but isoproterenol increased contractile force at concentrations two orders of magnitude lower than those that significantly increased cyclic AMP accumulation. Inhibition of cyclic AMP phosphodiesterase activity further increased the sensitivity to the inotropic actions of isoproterenol but did not attenuate the frequency difference. The results indicate that isoproterenol-stimulated Ca++ influx through the slow channel plays an important role in the mechanism of the increased sensitivity to the inotropic action of isoproterenol found at higher frequencies of contraction. Although cyclic AMP accumulation was also frequency dependent, its role in the inotropic action of isoproterenol in mouse heart is not clear.
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|