Abstract
Radiation-induced lung injury (RILI) is the main complication of radiotherapy for thoracic malignancies. Since naringenin, a potent immune-modulator, has been found to relieve bleomycin-induced lung fibrosis by restoring the balance of disordered cytokines, we sought to determine whether naringenin would mitigate RILI and to investigate the underlying mechanism. Animals received fractionated irradiation in the thoracic area to induce RILI. Enzyme-linked immunosorbent assay and MILLIPLEX assays were used for serum and bronchoalveolar lavage fluid for cytokine analyses, hematoxylin and eosin staining for pathologic changes, and Masson trichrome staining for determination of lung fibrosis. Interleukin (IL)-1β was found significantly elevated after thoracic irradiation and it triggered production of profibrotic tumor growth factor β both in vivo and in vitro, suggesting the vital role of in IL-1β in the development of RILI. Furthermore, we found that naringenin was able to ameliorate RILI through downregulation of IL-1β and restoration of the homeostasis of inflammatory factors. Our results demonstrated that naringenin could serve as a potent immune-modulator to ameliorate RILI. More importantly, we suggest that a new complementary strategy of maintaining the homeostasis of inflammatory factors combined with radiation could improve the efficacy of thoracic radiotherapy.
Footnotes
- Received February 27, 2018.
- Accepted May 31, 2018.
↵1 C.Z. and W.Z. contributed equally in the present study.
↵2 Y.Y. contributed equally in the present study.
This study was supported by National Natural Sciences Foundation of China [Grant 81503106 to F.Z.], [Grant 81773288 to F.Z.], and [Grant 81372407 to Q.S.] as well as National Major Scientific and Technological Special Project for Significant New Drugs Development [Grant 2018ZX09201001-001-004 to C.Z.].
↵This article has supplemental material available at jpet.aspetjournals.org.
- Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|