Na(+)-K+ pump cycle during beta-adrenergic stimulation of adult rat cardiac myocytes

J Physiol. 1998 Mar 1;507 ( Pt 2)(Pt 2):527-39. doi: 10.1111/j.1469-7793.1998.527bt.x.

Abstract

1. The mechanisms underlying the increase in Na(+)-K+ pump current (Ip) caused by adrenergic stimulation were investigated in cultured adult rat cardiac myocytes using the whole-cell patch-clamp technique at 31-33 degrees C. 2. In myocytes perfused internally with 50 mM Na+ (0 K+i, 20 nM Ca2+, caesium aspartate solution) and externally with 5.4 mM K+o, noradrenaline (NA) and isoprenaline (Iso) (1-50 microM) stimulated Ip by 40-45%. 3. Na(+)-dependent transient Ip measurements with 0 mM K+i and 0 mM K+o revealed no change in the total charge transferred by the Na(+)-K+ pump during the conformational change, suggesting that the pump site density was not changed by adrenergic stimulation (2630 +/- 370 pumps micron-2 in control and 2540 +/- 190 pumps micron-2 in the presence of 10 microM NA). 4. With saturating Na+i or K+o (150 and 15-20 mM, respectively), Ip was still stimulated by NA and Iso. Thus, there was no indication that adrenergic activation of the Na(+)-K+ pump was mediated by accumulation of Na+i and K+o or changes in the Na(+)-K+ pump affinity for Na+i and K+o. 5. Both Ip and its increase under adrenergic stimulation were found to depend on [K+]i. While steady-state Ip decreased from 2.2 +/- 0.1 to 1.2 +/- 0.1 pA pF-1 (P < 0.05), the stimulation of Ip by 10 microM Iso increased from 0.38 +/- 0.04 to 0.67 +/- 0.06 pA pF-1 (P < 0.05) with an increase in [K+]i from 0 to 100 mM. 6. Under conditions that cause the Ip-Vm (membrane potential) relationship to express a positive slope ([Na+]o, 150 mM; [K+]o, 5.4 mM) or a negative slope ([Na+]o, 0; [K+]o, 0.3 mM) Iso stimulated Ip with no change in the shape of Ip-Vm curves. Thus, adrenergic stimulation of the Na(+)-K+ pump was not due to an alteration of voltage-dependent steps of the pump cycle. 7. Simulation of these data with a six-step model of the Na(+)-K+ pump cycle suggested that in rat ventricular myocytes a signal from adrenergic receptors increased the Na(+)-K+ pump rate by modulating the rate of K+ de-occlusion and release by the pump.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenergic alpha-Agonists / pharmacology
  • Adrenergic beta-Agonists / pharmacology*
  • Animals
  • Cells, Cultured
  • Electric Stimulation
  • Electrophysiology
  • Heart / drug effects*
  • Male
  • Membrane Potentials / physiology
  • Myocardium / cytology
  • Myocardium / metabolism*
  • Patch-Clamp Techniques
  • Potassium / physiology
  • Protein Conformation
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Adrenergic, beta / drug effects
  • Receptors, Adrenergic, beta / physiology*
  • Sodium / physiology
  • Sodium-Potassium-Exchanging ATPase / physiology*

Substances

  • Adrenergic alpha-Agonists
  • Adrenergic beta-Agonists
  • Receptors, Adrenergic, beta
  • Sodium
  • Sodium-Potassium-Exchanging ATPase
  • Potassium