A genome-wide association study of cognitive function in Chinese adult twins

Biogerontology. 2017 Oct;18(5):811-819. doi: 10.1007/s10522-017-9725-5. Epub 2017 Aug 14.

Abstract

Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants associated with cognitive function in middle and old-aged Chinese dizygotic twins (DZ). Cognitive function was measured on 139 pairs of DZ by Montreal Cognitive Assessment. The subjects were genotyped at 1048575 SNP positions. Regression-based mixed-effect kinship model of GWAS was conducted to test the SNPs. Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive significance (P < 10-5). Gene-based analysis found 823 significant genes topped by TNRC18P1 (P = 1.00 × 10-6), FGFR1OP2 (P = 6.00 × 10-6), and AKR1D1 (P = 2.30 × 10-5). Enrichment analysis identified 46 biological pathways, mainly involving in signaling transmission, metabolic process and Alzheimer's disease. Analysis of SNPs involved in the regulatory motif detected cell-type specific enhancers involving aorta and colon smooth muscle both have been reported to implicate in cognition. We conclude that genetic variations are significantly involved in functional genes, biological pathways and the regulatory domain that mediate cognitive performances.

Keywords: Cognitive function; Dizygotic twins; Gene set enrichment analysis; Genome-wide association study.

Publication types

  • Twin Study

MeSH terms

  • Adult
  • China
  • Cognition*
  • Genome-Wide Association Study*
  • Humans
  • Polymorphism, Single Nucleotide