Direct excitation of rat spinal motoneurones by serotonin

J Physiol. 1990 Apr:423:63-76. doi: 10.1113/jphysiol.1990.sp018011.

Abstract

1. The effects of serotonin (5-HT) on visually identified motoneurones were investigated using the whole-cell recording technique in a neonatal rat spinal cord slice preparation. 2. In current-clamp recordings, bath application of 5-HT depolarized motoneurones. This effect was observed after synaptic inputs were abolished by replacing external Ca2+ with Mg2+. 3. In voltage-clamp recordings at holding potentials of -70 to -90 mV, 5-HT induced an inward current (I5-HT) in motoneurones in a Ca2(+)-free-Mg2+ solution containing tetrodotoxin. This inward current was accompanied by an increase in membrane conductance, which was prominent at voltages negative to the holding potential. 4. The inward I5-HT response declined with repeated short applications of 5-HT. I5-HT produced by a single prolonged application (5 min) was only slightly diminished during the application period. 5. The minimum effective dose of 5-HT for initiating the inward I5-HT was less than 10 nM. At 10 microM, I5-HT approached maximal levels. The averaged dissociation constant (Kd) for 5-HT was approximately 120 nM. 6. Application of spiperone, the mixed 5-HT1A, 5-HT2 receptor antagonist, blocked the inward I5-HT. Application of (+)-8-OH-dipropylaminotetralin (8-OHDPAT), a 5-HT1A agonist, mimicked the action of 5-HT. 7. Various K+ channel blockers including tetraethylammonium chloride (30 mM), 4-aminopyridine (4 mM) and apamin (100 nM) did not abolish I5-HT. Application of extracellular Cs+ (10 mM) blocked I5-HT. 8. Peak inward I5-HT became larger with increasing extracellular K+. With low Cl- pipette solution (less than 1 mM), or in low extracellular Na+ solution (26 mM), the inward I5-HT was not abolished. 9. The current-voltage relation of I5-HT displayed inward rectification. In high external K+ concentration (20 mM), the reversal potential was about -29 mV, which is close to that of the inward rectifier evoked in motoneurones by membrane hyperpolarization. 10. The current generated by 5-HT displayed similar characteristics to the inward rectifying current induced in motoneurones by membrane hyperpolarization. It is thus suggested that the 5-HT-induced current is possibly mediated by the intrinsic inward rectifier conductance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Electrophysiology
  • In Vitro Techniques
  • Ion Channels / drug effects
  • Ion Channels / physiology
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Motor Neurons / drug effects*
  • Motor Neurons / physiology
  • Rats
  • Rats, Inbred Strains
  • Receptors, Serotonin / drug effects
  • Receptors, Serotonin / physiology
  • Serotonin / pharmacology*
  • Spinal Cord / drug effects*
  • Spinal Cord / physiology

Substances

  • Ion Channels
  • Receptors, Serotonin
  • Serotonin