Enteric neuroimmunophysiology and pathophysiology

Gastroenterology. 2004 Aug;127(2):635-57. doi: 10.1053/j.gastro.2004.02.017.

Abstract

Minute-to-minute behavior of the bowel, whether it is normal or disordered, is determined by integrative functions of the enteric nervous system (ENS). Information input processed by the ENS is derived from local sensory receptors, the central nervous system, and immune/inflammatory cells including mast cells. Enteric mast cells use the power of the immune system for detection of antigenic threats and for long-term memory of the identity of the specific antigens. Specific antibodies attach to the mast cells and enable the mast cell to detect sensitizing antigens when they reappear in the gut lumen. Should the sensitizing antigen reappear, mast cells detect it and signal its presence to the ENS. The ENS interprets the mast cell signal as a threat and calls up from its program library secretory and propulsive motor behavior that is organized to eliminate the threat rapidly and effectively. Operation of the alarm program protects the individual, but at the expense of symptoms that include cramping abdominal pain, fecal urgency, and diarrhea. Enteric mast cells use immunologic memory functions to detect foreign antigens as they appear and reappear throughout the life of the individual. Mast cells use paracrine signaling for the transfer of chemical information to the neural networks of the ENS. Integrative circuits in the ENS receive and interpret the chemical signals from the mast cells. Signals from the mast cells are interpreted by the ENS as a labeled code for the presence of a threat in the intestinal lumen.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Digestive System / immunology*
  • Digestive System / innervation*
  • Enteric Nervous System / physiology*
  • Enteric Nervous System / physiopathology*
  • Humans
  • Neuroimmunomodulation / physiology*