Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors

Naunyn Schmiedebergs Arch Pharmacol. 2001 Apr;363(4):429-38. doi: 10.1007/s002100000382.

Abstract

The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H]-oxotremorine-M binding preclude their utilisation for the prevention of acetylcholine catabolism in rat brain membranes, the latter being required to estimate the binding of acetylcholine to [3H]-oxotremorine-M-labelled muscarinic receptors. However, fasciculin-2, a potent peptide inhibitor of acetylcholinesterase (IC50 24 nM), did prevent catabolism of acetylcholine in rat brain membranes with an atypical inhibition isotherm of [3H]-oxotremorine-M binding, thus permitting an estimation of the "global affinity" of acetylcholine (Ki 85 nM) for [3H]-oxotremorine-M-labelled muscarinic receptors in rat brain.

MeSH terms

  • Animals
  • Binding Sites
  • Brain / drug effects*
  • Brain / metabolism
  • Cholinesterase Inhibitors / pharmacology*
  • Elapid Venoms / pharmacology
  • Electrophorus
  • Muscarinic Agonists / metabolism*
  • Oxotremorine / analogs & derivatives*
  • Oxotremorine / metabolism*
  • Quinuclidinyl Benzilate / metabolism*
  • Rats
  • Receptors, Muscarinic / drug effects
  • Receptors, Muscarinic / metabolism*

Substances

  • Cholinesterase Inhibitors
  • Elapid Venoms
  • Muscarinic Agonists
  • Receptors, Muscarinic
  • Oxotremorine
  • oxotremorine M
  • Quinuclidinyl Benzilate
  • fasciculin