Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes

Hum Gene Ther. 1999 Jan 20;10(2):223-34. doi: 10.1089/10430349950019011.

Abstract

Cationic lipid-mediated gene transfer to the mouse lung induces a dose-dependent inflammatory response that is characterized by an influx of leukocytes and elevated levels of the cytokines interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), and interferon gamma (IFN-gamma). We have examined the contribution of plasmid DNA (pDNA) to this observed toxicity, specifically the role of unmethylated CpG dinucleotides, which have been previously shown to be immunostimulatory. We report here that complexes of cationic lipid GL-67 and unmethylated pDNA (pCF1-CAT) instilled into the lungs of BALB/c mice induced highly elevated levels of the cytokines TNF-alpha, IFN-gamma, IL-6, and IL-12 in the bronchoalveolar lavage fluids (BALF). In contrast, BALF of animals administered either GL-67 alone or GL-67 complexed with SssI-methylated pDNA contained low levels of these cytokines. Similar results were observed using a plasmid (pCF1-null) that does not express a transgene, demonstrating that expression of chloramphenicol acetyltransferase (CAT) was not responsible for the observed inflammation. The response observed was dose dependent, with animals receiving increasingly higher amounts of unmethylated pDNA exhibiting progressively higher levels of the cytokines. Concomitant with this increase in cytokine levels were also elevated numbers of neutrophils in the BALF, suggesting a possible cause- and-effect relationship between neutrophil influx and generation of cytokines. Consistent with this proposal is the observation that reduction of neutrophils in the lung by administration of antibodies against Mac-1alpha and LFA-1 also diminished cytokine levels. This reduction in cytokine levels in the BALF was accompanied by an increase in transgene expression. In an attempt to abate the inflammatory response, sequences in the pDNA encoding the motif RRCGYY, shown to be most immunostimulatory, were selectively mutagenized. However, instillation of a plasmid in which 14 of the 17 CpG sites were altered into BALF/c mice did not reduce the levels of cytokines in the BALF compared with the unmodified vector. This suggests that other unmethylated motifs, in addition to RRCGYY, may also contribute to the inflammatory response. Together, these findings indicate that unmethylated CpG residues in pDNA are a major contributor to the induction of specific proinflammatory cytokines associated with instillation of cationic lipid:pDNA complexes into the lung. Strategies to abate this response are warranted to improve the efficacy of this nonviral gene delivery vector system for the treatment of chronic diseases.

MeSH terms

  • Animals
  • Bronchoalveolar Lavage Fluid
  • Cations
  • CpG Islands
  • DNA / administration & dosage*
  • DNA / metabolism
  • DNA Methylation
  • Interferon-gamma / metabolism
  • Interleukin-6 / metabolism
  • Lung / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Neutrophils / cytology
  • Plasmids*
  • Pneumonia / genetics*
  • Pneumonia / metabolism
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Cations
  • Interleukin-6
  • Tumor Necrosis Factor-alpha
  • Interferon-gamma
  • DNA