Skip to main content
Log in

Pharmacokinetic/Pharmacodynamic Modelling in Diabetes Mellitus

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a major health risk in many countries, and the incidence rates are increasing. Diverse therapeutic agents are applied to treat this condition. Since 1960, numerous mathematical models have been developed to describe the glucose-insulin system, analyse data from diagnostic tests and quantify drug effects. This review summarizes the present state-of-the-art in diabetes modelling, with a focus on models describing drug effects, and identifies major strengths and limitations of the published models.

For diagnostic purposes, the minimal model has remained the most popular choice for several decades, and numerous extensions have been developed. Use of the minimal model is limited for applications other than diagnostic tests. More mechanistic models that include glucose-insulin feedback in both directions have been applied. The use of biophase distribution models for the description of drug effects is not always appropriate. More recently, the effects of various antidiabetic agents on glucose and insulin have been modelled with indirect response models. Such models provide good curve fits and mechanistic descriptions of the effects of antidiabetic drugs on glucose-insulin homeostasis. These and other types of models were used to describe secondary drug effects on glucose and insulin, and effects on ancillary biomarkers. Modelling of disease progression in diabetes can utilize indirect response models as a disturbance of homeostasis.

Future needs are to include glucose-insulin feedback more often, develop mechanistic models for new drug groups, consider dual drug effects on complementary subsystems, and incorporate elements of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Fig. 3
Table III
Fig. 4
Fig. 5
Table IV
Table V
Table VI
Fig. 6
Fig. 7
Fig. 8
Table VII
Table VIII

Similar content being viewed by others

References

  1. WHO. Fact sheet no. 312: diabetes [online]. Geneva: WHO, 2006. Available from URL: http://www.who.int/mediacentre/factsheets/fs312/en/print.html [Accessed 2008 Apr 10]

  2. LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002 Oct 28; 113 Suppl. 6A: 3S–11S

    Article  PubMed  CAS  Google Scholar 

  3. US Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2005. Atlanta (GA): CDC, 2005

    Google Scholar 

  4. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008 Mar; 31(3): 596–615

    Article  Google Scholar 

  5. Graham G, Gupta S, Aarons L. Determination of an optimal dosage regimen using a Bayesian decision analysis of efficacy and adverse effect data. J Pharmacokinet Pharmacodyn 2002 Feb; 29(1): 67–88

    Article  PubMed  CAS  Google Scholar 

  6. Boutayeb A, Chetouani A. A critical review of mathematical models and data used in diabetology. Biomed Eng Online 2006; 5: 43

    Article  PubMed  CAS  Google Scholar 

  7. Makroglou A, Li J, Kuang Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math 2006; 56: 559–73

    Article  Google Scholar 

  8. Kansal AR. Modeling approaches to type 2 diabetes. Diabetes Technol Ther 2004 Feb; 6(1): 39–47

    Article  PubMed  Google Scholar 

  9. Mari A. Mathematical modeling in glucose metabolism and insulin secretion. Curr Opin Clin Nutr Metab Care 2002 Sep; 5(5): 495–501

    Article  PubMed  CAS  Google Scholar 

  10. Pacini G. Mathematical models of insulin secretion in physiological and clinical investigations. Comput Methods Programs Biomed 1994 Jan; 41(3–4): 269–85

    Article  PubMed  CAS  Google Scholar 

  11. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411

    Article  PubMed  CAS  Google Scholar 

  12. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001 Dec 13; 414(6865): 799–806

    Article  PubMed  CAS  Google Scholar 

  13. Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007 Jan; 375(1–2): 20–35

    Article  PubMed  CAS  Google Scholar 

  14. Raju B, Cryer PE. Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? Am J Physiol Endocrinol Metab 2005 Aug; 289(2): E181–6

    Article  PubMed  CAS  Google Scholar 

  15. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005 Apr 9–15; 365(9467): 1333–46

    Article  PubMed  CAS  Google Scholar 

  16. Katz J, Tayek JA. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40-h-fasted humans. Am J Physiol 1998 Sep; 275 (3 Pt 1): E537–42

    PubMed  CAS  Google Scholar 

  17. Kjems LL, Christiansen E, Volund A, et al. Validation of methods for measurement of insulin secretion in humans in vivo. Diabetes 2000 Apr; 49(4): 580–8

    Article  PubMed  CAS  Google Scholar 

  18. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006 Dec; 55 Suppl. 2: S16–23

    Article  PubMed  CAS  Google Scholar 

  19. Newsholme P, Keane D, Welters HJ, et al. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007 Jan; 112(1): 27–42

    Article  CAS  Google Scholar 

  20. Tremblay F, Lavigne C, Jacques H, et al. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 2007 Aug 21; 27: 293–310

    Article  PubMed  CAS  Google Scholar 

  21. Marchetti P, Lupi R, Del Prato S, et al. The pancreatic beta-cell in human type. Nutr Metab Cardiovasc Dis 2006 Mar; 16 Suppl. 1: S3–6

    Article  PubMed  Google Scholar 

  22. Singh-Franco D, Robles G, Gazze D. Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clin Ther 2007 Apr; 29(4): 535–62

    Article  PubMed  CAS  Google Scholar 

  23. Ahren B, Larsson H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 2001 Nov; 44(11): 1998–2003

    Article  PubMed  CAS  Google Scholar 

  24. Ludvik B, Thomaseth K, Nolan JJ, et al. Inverse relation between amylin and glucagon secretion in healthy and diabetic human subjects. Eur J Clin Invest 2003 Apr; 33(4): 316–22

    Article  PubMed  CAS  Google Scholar 

  25. Wookey PJ, Lutz TA, Andrikopoulos S. Amylin in the periphery II: an updated mini-review. Sci World J 2006; 6: 1642–55

    Article  CAS  Google Scholar 

  26. Young A. Effects on plasma glucose and lactate. Adv Pharmacol 2005; 52: 193–208

    Article  PubMed  CAS  Google Scholar 

  27. Colburn WA, Gottlieb AB, Koda J, et al. Pharmacokinetics and pharmacodynamics of AC137 (25,28,29 tripro-amylin, human) after intravenous bolus and infusion doses in patients with insulin-dependent diabetes. J Clin Pharmacol 1996 Jan; 36(1): 13–24

    PubMed  CAS  Google Scholar 

  28. Kerckhoffs DA, Arner P, Bolinder J. Lipolysis and lactate production in human skeletal muscle and adipose tissue following glucose ingestion. Clin Sci (Lond) 1998 Jan; 94(1): 71–7

    CAS  Google Scholar 

  29. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 Nov 11; 368(9548): 1696–705

    Article  PubMed  CAS  Google Scholar 

  30. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007 May; 132(6): 2131–57

    Article  PubMed  CAS  Google Scholar 

  31. Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000 Oct; 85(10): 3575–81

    Article  PubMed  CAS  Google Scholar 

  32. Lam TK, Carpentier A, Lewis GF, et al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003 May; 284(5): E863–73

    PubMed  CAS  Google Scholar 

  33. Almon RR, Dubois DC, Jin JY, et al. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol 2005 Jan; 184(1): 219–32

    Article  PubMed  CAS  Google Scholar 

  34. Koistinen HA, Zierath JR. Regulation of glucose transport in human skeletal muscle. Ann Med 2002; 34(6): 410–8

    Article  PubMed  CAS  Google Scholar 

  35. DeFronzo RA, Gunnarsson R, Bjorkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 1985 Jul; 76(1): 149–55

    Article  PubMed  CAS  Google Scholar 

  36. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 Apr 13; I: 785–9

    Article  Google Scholar 

  37. Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 2007 Mar; 10(2): 142–8

    Article  PubMed  CAS  Google Scholar 

  38. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002 Jun; 32 Suppl. 3: 14–23

    Article  PubMed  CAS  Google Scholar 

  39. Quon MJ. Advances in kinetic analysis of insulin-stimulated GLUT-4 translocation in adipose cells. Am J Physiol 1994 Jan; 266 (1 Pt 1): E144–50

    PubMed  CAS  Google Scholar 

  40. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006 Jul; 116(7): 1784–92

    Article  PubMed  CAS  Google Scholar 

  41. Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 2006 Jan; 186(1): 5–16

    Article  CAS  Google Scholar 

  42. Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin — the classical, resistin —the controversial, adiponectin — the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005 Dec; 19(4): 525–46

    Article  PubMed  CAS  Google Scholar 

  43. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999 Aug 17; 131(4): 281–303

    PubMed  CAS  Google Scholar 

  44. Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007 Apr; 28(2): 187–218

    Article  PubMed  CAS  Google Scholar 

  45. Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Ther 2006 Jul; 111(1): 145–73

    Article  PubMed  CAS  Google Scholar 

  46. Gastaldelli A, Miyazaki Y, Mahankali A, et al. The effect of pioglitazone on the liver: role of adiponectin. Diabetes Care 2006 Oct; 29(10): 2275–81

    Article  PubMed  CAS  Google Scholar 

  47. Edelman SV, Darsow T, Frias JP. Pramlintide in the treatment of diabetes. Int J Clin Pract 2006 Dec; 60(12): 1647–53

    Article  PubMed  CAS  Google Scholar 

  48. Berman M. Insulin kinetics, models, and delivery schedules. Diabetes Care 1980 Mar-Apr; 3(2): 266–9

    Article  PubMed  CAS  Google Scholar 

  49. Bergman RN, Cobelli C. Minimal modeling, partition analysis, and the estimation of insulin sensitivity. Fed Proc 1980 Jan; 39(1): 110–5

    PubMed  CAS  Google Scholar 

  50. Bolie VW. Coefficients of normal blood glucose regulation. J Appl Physiol 1961 Sep; 16: 783–8

    PubMed  CAS  Google Scholar 

  51. Insel PA, Liljenquist JE, Tobin JD, et al. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest 1975 May; 55(5): 1057–66

    Article  PubMed  CAS  Google Scholar 

  52. Sherwin RS, Kramer KJ, Tobin JD, et al. A model of the kinetics of insulin in man. J Clin Invest 1974 May; 53(5): 1481–92

    Article  PubMed  CAS  Google Scholar 

  53. Srinivasan R, Kadish AH, Sridhar R. A mathematical model for the control mechanism of free fatty acid-glucose metabolism in normal humans. Comput Biomed Res 1970 Apr; 3(2): 146–65

    Article  PubMed  CAS  Google Scholar 

  54. Bergman RN, Ider YZ, Bowden CR, et al. Quantitative estimation of insulin sensitivity. Am J Physiol 1979 Jun; 236(6): E667–77

    PubMed  CAS  Google Scholar 

  55. Turner RC, Holman RR, Matthews D, et al. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 1979 Nov; 28(11): 1086–96

    Article  PubMed  CAS  Google Scholar 

  56. Himsworth H, Ker R. Insulin-sensitive and insulin insensitive types of diabetes mellitus. Clin Sci 1939; 4: 119–22

    CAS  Google Scholar 

  57. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 1959 Sep 25; 82: 420–30

    Article  PubMed  CAS  Google Scholar 

  58. Ackerman E, Gatewood LC, Rosevear JW, et al. Model studies of blood-glucose regulation. Bull Math Biophys 1965; 27 Suppl.: 21–37

    Article  PubMed  CAS  Google Scholar 

  59. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979 Sep; 237(3): E214–23

    PubMed  CAS  Google Scholar 

  60. Andres R, Swerdloff R, Pozesky T, et al. Manual feedback technique for control of glucose concentration. In: Skeggs JL, editor. Automation in analytical chemistry. New York: Medaid, 1966: 486–501

    Google Scholar 

  61. Kjems LL, Volund A, Madsbad S. Quantification of beta-cell function during IVGTT in type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods. Diabetologia 2001 Oct; 44(10): 1339–48

    Article  PubMed  CAS  Google Scholar 

  62. Monzillo LU, Hamdy O. Evaluation of insulin sensitivity in clinical practice and in research settings. Nutr Rev 2003 Dec; 61(12): 397–412

    Article  PubMed  Google Scholar 

  63. Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med 2002 Jul; 19(7): 527–34

    Article  PubMed  CAS  Google Scholar 

  64. Tornoe CW, Jacobsen JL, Madsen H. Grey-box pharmacokinetic/pharmacodynamic modelling of a euglycaemic clamp study. J Math Biol 2004 Jun; 48(6): 591–604

    Article  PubMed  Google Scholar 

  65. Picchini U, Ditlevsen S, De Gaetano A. Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J Math Biol 2006 Nov; 53(5): 771–96

    Article  PubMed  Google Scholar 

  66. Mager DE, Abernethy DR, Egan JM, et al. Exendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther 2004 Nov; 311(2): 830–5

    Article  PubMed  CAS  Google Scholar 

  67. Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using spharmacodynamic modeling. Diabetes Care 1994 Jan; 17(1): 64–9

    Article  PubMed  CAS  Google Scholar 

  68. Hoenig M, Thomaseth K, Brandao J, et al. Assessment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest Anim Endocrinol 2006 Nov; 31(4): 373–89

    Article  PubMed  CAS  Google Scholar 

  69. Bergman RN. Minimal model: perspective from 2005. Horm Res 2005; 64 Suppl. 3: 8–15

    Article  PubMed  CAS  Google Scholar 

  70. Toffolo G, Bergman RN, Finegood DT, et al. Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 1980 Dec; 29(12): 979–90

    Article  PubMed  CAS  Google Scholar 

  71. Bergman RN. Pathogenesis and prediction of diabetes mellitus: lessons from integrative physiology. Mt Sinai J Med 2002 Oct; 69(5): 280–90

    PubMed  Google Scholar 

  72. Cobelli C, Bettini F, Caumo A, et al. Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling. Am J Physiol 1998 Dec; 275 (6 Pt 1): E1031–6

    PubMed  CAS  Google Scholar 

  73. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens 1998 Jul; 16(7): 895–906

    Article  PubMed  CAS  Google Scholar 

  74. De Gaetano A, Arino O. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 2000 Feb; 40(2): 136–68

    Article  PubMed  Google Scholar 

  75. Bergman RN. New concepts in extracellular signaling for insulin action: the single gateway hypothesis. Recent Prog Horm Res 1997; 52: 359–85; discussion 385-7

    PubMed  CAS  Google Scholar 

  76. Bergman RN. Lilly Lecture 1989: toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989 Dec; 38(12): 1512–27

    CAS  Google Scholar 

  77. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 1981 Dec; 68(6): 1456–67

    Article  PubMed  CAS  Google Scholar 

  78. Polonsky KS, Licinio-Paixao J, Given BD, et al. Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 1986 Jan; 77(1): 98–105

    Article  PubMed  CAS  Google Scholar 

  79. Tura A, Ludvik B, Nolan JJ, et al. Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT. Am J Physiol Endocrinol Metab 2001 Nov; 281(5): E966–74

    PubMed  CAS  Google Scholar 

  80. Toffolo G, Campioni M, Basu R, et al. A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab 2006 Jan; 290(1): E169–76

    Article  PubMed  CAS  Google Scholar 

  81. Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diabetes Technol Ther 2006 Dec; 8(6): 617–26

    Article  PubMed  CAS  Google Scholar 

  82. Fabietti PG, Canonico V, Federici MO, et al. Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 2006 Mar; 44(1–2): 69–78

    Article  PubMed  Google Scholar 

  83. Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech 2002 Jul; 35(7): 911–7

    Article  PubMed  CAS  Google Scholar 

  84. Cobelli C, Pacini G, Toffolo G, et al. Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. Am J Physiol 1986 May; 250 (5 Pt 1): E591–8

    PubMed  CAS  Google Scholar 

  85. Cobelli C, Caumo A, Omenetto M. Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model. Am J Physiol 1999 Sep; 277 (3 Pt 1): E481–8

    PubMed  CAS  Google Scholar 

  86. Hovorka R, Shojaee-Moradie F, Carroll PV, et al. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 2002 May; 282(5): E992–1007

    PubMed  CAS  Google Scholar 

  87. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 Jul; 28(7): 412–9

    Article  PubMed  CAS  Google Scholar 

  88. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004 Jun; 27(6): 1487–95

    Article  PubMed  Google Scholar 

  89. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998 Dec; 21(12): 2191–2

    Article  PubMed  CAS  Google Scholar 

  90. Chang AM, Smith MJ, Bloem CJ, et al. Limitation of the homeostasis model assessment to predict insulin resistance and beta-cell dysfunction in older people. J Clin Endocrinol Metab 2006 Feb; 91(2): 629–34

    Article  PubMed  CAS  Google Scholar 

  91. Li J, Kuang Y, Li B. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete Contin Dynam Systems Series B 2001; 1(1): 103–24

    Article  Google Scholar 

  92. Silber HE, Jauslin PM, Frey N, et al. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol 2007 Sep; 47(9): 1159–71

    Article  PubMed  CAS  Google Scholar 

  93. Jauslin PM, Silber HE, Frey N, et al. A disease model describing the regulation of the glucose-insulin system in diabetic patients after IVGTT and OGTT [abstract no. 799; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14]

    Google Scholar 

  94. Jauslin PM, Silber HE, Frey N, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol 2007 Oct; 47(10): 1244–55

    Article  PubMed  CAS  Google Scholar 

  95. Dansirikul C, Karlsson MO. Insulin secretion and hepatic extraction during euglycemic clamp study: modelling of insulin and C-peptide data [abstract no. 1142; online]. Annual Meeting of the Population Approach Group in Europe; 2007 Jun 13–15; Copenhagen. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14]

    Google Scholar 

  96. Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic differentiation of pancreatic responsiveness in obese and lean children. Biopharm Drug Dispos 2005 Oct; 26(7): 287–94

    Article  PubMed  CAS  Google Scholar 

  97. Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic insulin-glucose analysis for differentiation of beta-cell function: an 18 month follow-up study in pre-pubertal lean and obese children. Biopharm Drug Dispos 2006 Sep; 27(6): 257–65

    Article  PubMed  CAS  Google Scholar 

  98. Caumo A, Luzi L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab 2004 Sep; 287(3): E371–85

    Article  PubMed  CAS  Google Scholar 

  99. Eaton RP, Allen RC, Schade DS, et al. Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 1980 Sep; 51(3): 520–8

    Article  PubMed  CAS  Google Scholar 

  100. Volund A, Polonsky KS, Bergman RN. Calculated pattern of intraportal insulin appearance without independent assessment of C-peptide kinetics. Diabetes 1987 Oct; 36(10): 1195–202

    Article  PubMed  CAS  Google Scholar 

  101. Watanabe RM, Volund A, Roy S, et al. Prehepatic beta-cell secretion during the intravenous glucose tolerance test in humans: application of a combined model of insulin and C-peptide kinetics. J Clin Endocrinol Metab 1989 Oct; 69(4): 790–7

    Article  PubMed  CAS  Google Scholar 

  102. Christiansen E, Kjems LL, Volund A, et al. Insulin secretion rates estimated by two mathematical methods in pancreas-kidney transplant recipients. Am J Physiol 1998 Apr; 274 (4 Pt 1): E716–25

    PubMed  CAS  Google Scholar 

  103. Lima JJ, Matsushima N, Kissoon N, et al. Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther 2004 Jul; 76(1): 27–37

    Article  PubMed  CAS  Google Scholar 

  104. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993 Aug; 21(4): 457–78

    PubMed  CAS  Google Scholar 

  105. Jusko WJ, Ko HC. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 1994 Oct; 56(4): 406–19

    Article  PubMed  CAS  Google Scholar 

  106. Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1996 Dec; 24(6): 611–35

    PubMed  CAS  Google Scholar 

  107. Krzyzanski W, Jusko WJ. Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions. J Pharmacokinet Biopharm 1998 Aug; 26(4): 385–408

    PubMed  CAS  Google Scholar 

  108. Hanze E, Green B, Duffull SB, et al. The influence of metformin on HbA1c: a PKPD model [poster no. T3379]. AAPS Annual Meeting and Exposition; 2006 Oct 29–Nov 2; San Antonio (TX)

    Google Scholar 

  109. de Winter W, DeJongh J, Post T, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn 2006 Jun; 33(3): 313–43

    Article  PubMed  CAS  Google Scholar 

  110. Koeslag JH, Saunders PT, Terblanche E. A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus-syndrome X complex. J Physiol 2003 Jun 1; 549 (Pt 2): 333–46

    Article  PubMed  CAS  Google Scholar 

  111. Ibbini MS, Masadeh MA, Amer MM. A semiclosed-loop optimal control system for blood glucose level in diabetics. J Med Eng Technol 2004 Sep–Oct; 28(5): 189–96

    Article  PubMed  CAS  Google Scholar 

  112. Schlotthauer G, Gamero LG, Torres ME, et al. Modeling, identification and nonlinear model predictive control of type I diabetic patient. Med Eng Phys 2006 Apr; 28(3): 240–50

    Article  PubMed  Google Scholar 

  113. Parker RS, Doyle 3rd FJ, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999 Feb; 46(2): 148–57

    Article  PubMed  CAS  Google Scholar 

  114. Fabietti PG, Canonico V, Orsini-Federici M, et al. Clinical validation of a new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes. Diabetes Technol Ther 2007 Aug; 9(4): 327–38

    Article  PubMed  CAS  Google Scholar 

  115. Tiran J, Avruch LI, Albisser AM. A circulation and organs model for insulin dynamics. Am J Physiol 1979 Oct; 237(4): E331–9

    PubMed  CAS  Google Scholar 

  116. Tiran J, Galle KR, Porte Jr D. A simulation model of extracellular glucose distribution in the human body. Ann Biomed Eng 1975 Mar; 3(1): 34–46

    Article  PubMed  CAS  Google Scholar 

  117. Yamasaki Y, Tiran J, Albisser AM. Modeling glucose disposal in diabetic dogs fed mixed meals. Am J Physiol 1984 Jan; 246 (1 Pt 1): E52–61

    PubMed  CAS  Google Scholar 

  118. Porksen N, Hollingdal M, Juhl C, et al. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 2002 Feb; 51 Suppl. 1: S245–54

    Article  PubMed  CAS  Google Scholar 

  119. Simon C, Brandenberger G. Ultradian oscillations of insulin secretion in humans. Diabetes 2002 Feb; 51 Suppl. 1: S258–61

    Article  PubMed  CAS  Google Scholar 

  120. Boden G, Ruiz J, Urbain JL, et al. Evidence for a circadian rhythm of insulin secretion. Am J Physiol 1996 Aug; 271 (2 Pt 1): E246–52

    PubMed  CAS  Google Scholar 

  121. Sturis J, Polonsky KS, Mosekilde E, et al. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am J Physiol 1991 May; 260 (5 Pt 1): E801–9

    PubMed  CAS  Google Scholar 

  122. Shapiro ET, Tillil H, Polonsky KS, et al. Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab 1988 Aug; 67(2): 307–14

    Article  PubMed  CAS  Google Scholar 

  123. Tolic IM, Mosekilde E, Sturis J. Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 2000 Dec 7; 207(3): 361–75

    Article  PubMed  CAS  Google Scholar 

  124. Li J, Kuang Y, Mason CC. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 2006 Oct 7; 242(3): 722–35

    Article  PubMed  CAS  Google Scholar 

  125. Berman M, McGuire EA, Roth J, et al. Kinetic modeling of insulin binding to receptors and degradation in vivo in the rabbit. Diabetes 1980 Jan; 29(1): 50–9

    PubMed  CAS  Google Scholar 

  126. Jones RH, Sonksen PH, Boroujerdi MA, et al. Number and affinity of insulin receptors in intact human subjects. Diabetologia 1984 Aug; 27(2): 207–11

    PubMed  CAS  Google Scholar 

  127. de Beaudrap P, Witten G, Biltz G, et al. Mechanistic model of fuel selection in the muscle. J Theor Biol 2006 Sep 7; 242(1): 151–63

    Article  PubMed  CAS  Google Scholar 

  128. Davis EA, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 1999 Oct; 42(10): 1175–86

    Article  PubMed  CAS  Google Scholar 

  129. Sedaghat AR, Sherman A, Quon MJ. A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metab 2002 Nov; 283(5): E1084–101

    PubMed  CAS  Google Scholar 

  130. Sweet IR, Li G, Najafi H, et al. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am J Physiol 1996 Sep; 271 (3 Pt 1): E606–25

    PubMed  CAS  Google Scholar 

  131. Mosekilde E, Jensen KS, Binder C, et al. Modeling absorption kinetics of subcutaneous injected soluble insulin. J Pharmacokinet Biopharm 1989 Feb; 17(1): 67–87

    PubMed  CAS  Google Scholar 

  132. Mosekilde E, Sosnovtseva OV, Holstein-Rathlou NH. Mechanism-based modeling of complex biomedical systems. Basic Clin Pharmacol Toxicol 2005 Mar; 96(3): 212–24

    Article  PubMed  CAS  Google Scholar 

  133. Osterman-Golkar SM, Vesper HW. Assessment of the relationship between glucose and A1c using kinetic modeling. J Diabetes Complications 2006 Sep–Oct; 20(5): 285–94

    Article  PubMed  Google Scholar 

  134. Beach KW. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J Theor Biol 1979 Dec 7; 81(3): 547–61

    Article  PubMed  CAS  Google Scholar 

  135. Shi K, Tahara Y, Noma Y, et al. The response of glycated albumin to blood glucose change in the circulation in streptozotocin-diabetic rats -comparison of theoretical values with experimental data. Diabetes Res Clin Pract 1992 Sep; 17(3): 153–60

    Article  PubMed  CAS  Google Scholar 

  136. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 2003 May; 31(5): 510–8

    Article  PubMed  CAS  Google Scholar 

  137. Danhof M, de Jongh J, De Lange EC, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 2007; 47: 357–400

    Article  PubMed  CAS  Google Scholar 

  138. Furchgott RF. The pharmacology of vascular smooth muscle. Pharmacol Rev 1955 Jun; 7(2): 183–265

    PubMed  CAS  Google Scholar 

  139. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71

    PubMed  CAS  Google Scholar 

  140. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 1910; 40: IV–VII

    Google Scholar 

  141. Wagner JG. Kinetics of pharmacologic response: I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968 Aug; 20(2): 173–201

    Article  PubMed  CAS  Google Scholar 

  142. Brown SA, Nelson RW, Bottoms GD. Models for the pharmacokinetics and pharmacodynamics of insulin in alloxan-induced diabetic dogs. J Pharm Sci 1987 Apr; 76(4): 295–9

    Article  PubMed  CAS  Google Scholar 

  143. Miyazaki M, Mukai H, Iwanaga K, et al. Pharmacokinetic-pharmacodynamic modelling of human insulin: validity of pharmacological availability as a substitute for extent of bioavailability. J Pharm Pharmacol 2001 Sep; 53(9): 1235–46

    Article  PubMed  CAS  Google Scholar 

  144. Lin S, Chien YW. Pharmacokinetic-pharmacodynamic modelling of insulin: comparison of indirect pharmacodynamic response with effect-compartment link models. J Pharm Pharmacol 2002 Jun; 54(6): 791–800

    Article  PubMed  CAS  Google Scholar 

  145. Rydberg T, Jonsson A, Karlsson MO, et al. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997 Apr; 43(4): 373–81

    Article  PubMed  CAS  Google Scholar 

  146. Frey N, Laveille C, Paraire M, et al. Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 2003 Feb; 55(2): 147–57

    Article  PubMed  CAS  Google Scholar 

  147. Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002 Mar; 12(2): 101–9

    Article  PubMed  CAS  Google Scholar 

  148. Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006 Nov; 91(11): 4612–9

    Article  PubMed  CAS  Google Scholar 

  149. Young MA, Eckland DJ, Eastmond R, et al. Establishing the dose response curve for metabolic control with troglitazone, an insulin action enhancer, in type 2 diabetes patients. Ann Med 1998 Apr; 30(2): 206–12

    Article  PubMed  CAS  Google Scholar 

  150. Bertacca A, Ciccarone A, Cecchetti P, et al. Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism 2005 Dec; 54(12): 1687–93

    Article  PubMed  CAS  Google Scholar 

  151. Gavin 3rd JR, Roth J, Neville Jr DM, et al. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A 1974 Jan; 71(1): 84–8

    Article  PubMed  CAS  Google Scholar 

  152. Bertacca A, Ciccarone A, Cecchetti P, et al. High insulin levels impair intracellular receptor trafficking in human cultured myoblasts. Diabetes Res Clin Pract 2007 Dec; 78(3): 316–23

    Article  PubMed  CAS  Google Scholar 

  153. Melander A, Donnelly R, Rydberg T. Is there a concentration-effect relationship for sulphonylureas? Clin Pharmacokinet 1998 Mar; 34(3): 181–8

    Article  PubMed  CAS  Google Scholar 

  154. Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci 2003 Jun; 19(2–3): 141–50

    Article  PubMed  CAS  Google Scholar 

  155. Osterberg O, Erichsen L, Ingwersen SH, et al. Pharmacokinetic and pharmacodynamic properties of insulin aspart and human insulin. J Pharmacokinet Pharmacodyn 2003 Jun; 30(3): 221–35

    Article  PubMed  CAS  Google Scholar 

  156. Vicini P, Avogaro A, Spilker ME, et al. Epinephrine effects on insulin-glucose dynamics: the labeled IVGTT two-compartment minimal model approach. Am J Physiol Endocrinol Metab 2002 Jul; 283(1): E78–84

    PubMed  CAS  Google Scholar 

  157. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005 Aug; 90(8): 4888–94

    Article  PubMed  CAS  Google Scholar 

  158. Rostami-Hodjegan A, Peacey SR, George E, et al. Population-based modeling to demonstrate extrapancreatic effects of tolbutamide. Am J Physiol 1998 Apr; 274 (4 Pt 1): E758–71

    PubMed  CAS  Google Scholar 

  159. Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002 Apr; 71(4): 286–96

    Article  PubMed  CAS  Google Scholar 

  160. Yun HY, Park HC, Kang W, et al. Pharmacokinetic and pharmacodynamic modelling of the effects of glimepiride on insulin secretion and glucose lowering in healthy humans. J Clin Pharm Ther 2006 Oct; 31(5): 469–76

    Article  PubMed  CAS  Google Scholar 

  161. Lee SH, Kwon KI. Pharmacokinetic-pharmacodynamic modeling for the relationship between glucose-lowering effect and plasma concentration of metformin in volunteers. Arch Pharm Res 2004 Jul; 27(7): 806–10

    Article  PubMed  CAS  Google Scholar 

  162. Gopalakrishnan M, Suarez S, Hickey AJ, et al. Population pharmacokinetic-pharmacodynamic modeling of subcutaneous and pulmonary insulin in rats. J Pharmacokinet Pharmacodyn 2005 Aug; 32(3–4): 485–500

    Article  PubMed  CAS  Google Scholar 

  163. Benincosa L, Jusko WJ. Novel method of treatment. Geneva: World Intellectual Property Organization, 1999. Publ. no. W0/2000/027341

  164. Hamrén B, Björk E, Karlsson MO. Mechanism-based pharmacokinetic and pharmacodynamic modelling of tesaglitazar in type 2 diabetes patients [abstract no. 961]. Annual Meeting of the Population Approach Group in Europe; 2006 Jul 14-16; Bruges. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14]

    Google Scholar 

  165. Stepensky D, Friedman M, Raz I, et al. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos 2002 Aug; 30(8): 861–8

    Article  PubMed  CAS  Google Scholar 

  166. Hamrén B, Bjork E, Sunzel M, et al. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin Pharmacol Ther. Epub 2008 Mar 19

  167. Hong Y, Rohatagi S, Habtemariam B, et al. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol. Epub 2008 Mar 27

  168. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetics and pharmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. Pulm Pharmacol Ther 1999; 12(6): 353–62

    Article  PubMed  CAS  Google Scholar 

  169. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetic and pharmacodynamic characteristics and safety of inhaled albuterol enantiomers in healthy volunteers. J Clin Pharmacol 1998 Dec; 38(12): 1096–106

    PubMed  CAS  Google Scholar 

  170. Kveiborg B, Christiansen B, Major-Petersen A, et al. Metabolic effects of beta-adrenoceptor antagonists with special emphasis on carvedilol. Am J Cardiovasc Drugs 2006; 6(4): 209–17

    Article  PubMed  CAS  Google Scholar 

  171. Larsen JL, Bennett RG, Burkman T, et al. Tacrolimus and sirolimus cause insulin resistance in normal Sprague Dawley rats. Transplantation 2006 Aug 27; 82(4): 466–70

    Article  PubMed  CAS  Google Scholar 

  172. Amamoto T, Kumai T, Nakaya S, et al. The elucidation of the mechanism of weight gain and glucose tolerance abnormalities induced by chlorpromazine. J Pharmacol Sci 2006 Oct; 102(2): 213–9

    Article  PubMed  CAS  Google Scholar 

  173. Wirshing DA, Boyd JA, Meng LR, et al. The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry 2002 Oct; 63(10): 856–65

    Article  PubMed  CAS  Google Scholar 

  174. Ramaswamy K, Masand PS, Nasrallah HA. Do certain atypical antipsychotics increase the risk of diabetes? A critical review of 17 pharmacoepidemiologic studies. Ann Clin Psychiatry 2006 Jul–Sep; 18(3): 183–94

    Article  PubMed  Google Scholar 

  175. Houseknecht KL, Robertson AS, Zavadoski W, et al. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 2007 Feb; 32(2): 289–97

    Article  PubMed  CAS  Google Scholar 

  176. Chiu CC, Chen KP, Liu HC, et al. The early effect of olanzapine and risperidone on insulin secretion in atypical-naive schizophrenic patients. J Clin Psychopharmacol 2006 Oct; 26(5): 504–7

    Article  PubMed  CAS  Google Scholar 

  177. Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther 2006 Nov; 28(11): 1857–66

    Article  PubMed  CAS  Google Scholar 

  178. Yamada C, Nagashima K, Takahashi A, et al. Gatifloxacin acutely stimulates insulin secretion and chronically suppresses insulin biosynthesis. Eur J Pharmacol 2006 Dec 28; 553(1–3): 67–72

    Article  PubMed  CAS  Google Scholar 

  179. Ishiwata Y, Sanada Y, Yasuhara M. Effects of gatifloxacin on serum glucose concentration in normal and diabetic rats. Biol Pharm Bull 2006 Mar; 29(3): 527–31

    Article  PubMed  CAS  Google Scholar 

  180. Zillich AJ, Garg J, Basu S, et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006 Aug; 48(2): 219–24

    Article  PubMed  CAS  Google Scholar 

  181. Doyle ME, Egan JM. Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 2003 Mar; 55(1): 105–31

    Article  PubMed  CAS  Google Scholar 

  182. Cusi K, Kashyap S, Gastaldelli A, et al. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab 2007 Jun; 292(6): E1775–81

    Article  PubMed  CAS  Google Scholar 

  183. Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol 1993 Feb; 33(2): 115–23

    PubMed  CAS  Google Scholar 

  184. Sato S, Katayama K, Kakemi M, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: II. Effect of chlorpromazine on plasma glucose. J Pharmacobiodyn 1988 Jul; 11(7): 492–503

    Article  PubMed  CAS  Google Scholar 

  185. Sato S, Mizuno S, Hatanaka T, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: I. Effect of chlorpromazine on plasma catecholamines. J Pharmacobiodyn 1988 Jul; 11(7): 486–91

    Article  PubMed  CAS  Google Scholar 

  186. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000 May; 43(5): 533–49

    Article  PubMed  CAS  Google Scholar 

  187. Lesko LJ, Atkinson Jr AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41: 347–66

    Article  PubMed  CAS  Google Scholar 

  188. Colburn WA, Lee JW. Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet 2003; 42(12): 997–1022

    Article  PubMed  CAS  Google Scholar 

  189. Danhof M, Alvan G, Dahl SG, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: a new classification of biomarkers. Pharm Res 2005 Sep; 22(9): 1432–7

    Article  PubMed  CAS  Google Scholar 

  190. van Griensven JM, Jusko WJ, Lemkes HH, et al. Tolrestat pharmacokinetic and pharmacodynamic effects on red blood cell sorbitol levels in normal volunteers and in patients with insulin-dependent diabetes. Clin Pharmacol Ther 1995 Dec; 58(6): 631–40

    Article  PubMed  Google Scholar 

  191. Hamrén B, Ericsson H, Öhman P, et al. Pharmacokinetic and pharmacodynamic modelling of the dual PPAR α/β agonist tesaglitazar in patients with manifestations of insulin resistance [abstract no. 808; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14]

    Google Scholar 

  192. van Schaick EA, Zuideveld KP, Tukker HE, et al. Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-sulfophenyl)adenosine in diabetic Zucker rats: influence of the disease on the selectivity of action. J Pharmacol Exp Ther 1998 Oct; 287(1): 21–30

    PubMed  Google Scholar 

  193. Van der Graaf PH, Van Schaick EA, Visser SA, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther 1999 Aug; 290(2): 702–9

    PubMed  Google Scholar 

  194. Jin JY, DuBois DC, Almon RR, et al. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 2004 Apr; 309(1): 328–39

    Article  PubMed  CAS  Google Scholar 

  195. Summers RL, Montani J-P. Mathematical model of glucose homeostasis for the study of metabolic states. J Miss Acad Sci 1989; 34: 25–31

    Google Scholar 

  196. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007 May; 132(6): 2169–80

    Article  PubMed  CAS  Google Scholar 

  197. Rangamani P, Sirovich L. Survival and apoptotic pathways initiated by TNF-alpha: modeling and predictions. Biotechnol Bioeng 2007 Aug 1; 97(5): 1216–29

    Article  PubMed  CAS  Google Scholar 

  198. Keith M, Norwich KH, Wong W, et al. The tissue distribution of tumor necrosis factor-alpha in rats: a compartmental model. Metabolism 2000 Oct; 49(10): 1309–17

    Article  PubMed  CAS  Google Scholar 

  199. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006 Dec 14; 444(7121): 840–6

    Article  PubMed  CAS  Google Scholar 

  200. Krzyzanski W, Jusko WJ. Note: caution in use of empirical equations for pharmacodynamic indirect response models. J Pharmacokinet Biopharm 1998 Dec; 26(6): 735–41

    PubMed  CAS  Google Scholar 

  201. Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 1983 Dec 22; 220(1219): 141–62

    Article  PubMed  CAS  Google Scholar 

  202. Howard BV, Klimes I, Vasquez B, et al. The antilipolytic action of insulin in obese subjects with resistance to its glucoregulatory action. J Clin Endocrinol Metab 1984 Mar; 58(3): 544–8

    Article  PubMed  CAS  Google Scholar 

  203. Sturm K, Levstik L, Demopoulos VJ, et al. Permeability characteristics of novel aldose reductase inhibitors using rat jejunum in vitro. Eur J Pharm Sci 2006 May; 28(1–2): 128–33

    Article  PubMed  CAS  Google Scholar 

  204. US FDA. Challenge and opportunity on the critical path to new medical products [online]. Rockville (MD): FDA, 2004 Mar. Available from URL: http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html [Accessed 2008 Apr 10]

    Google Scholar 

  205. Holford NHG, Mould DR, Peck C. Disease progression models. In: Atkinson A, editor. Principles of clinical pharmacology. New York: Academic Press, 2001

    Google Scholar 

  206. Levy J, Atkinson AB, Bell PM, et al. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med 1998 Apr; 15(4): 290–6

    Article  PubMed  CAS  Google Scholar 

  207. Mould DR. Developing models of disease progression. In: Ette EI, Williams PJ, editors. Pharmacometrics. Hoboken (NJ): John Wiley & Sons, Inc., 2007: 547–81

    Chapter  Google Scholar 

  208. Chan PL, Holford NH. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 2001; 41: 625–59

    Article  PubMed  CAS  Google Scholar 

  209. Post TM, Freijer JI, DeJongh J, et al. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res 2005 Jul; 22(7): 1038–49

    Article  PubMed  CAS  Google Scholar 

  210. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006 Dec 7; 355(23): 2427–43

    Article  PubMed  CAS  Google Scholar 

  211. Topp B, Promislow K, de Vries G, et al. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000 Oct 21; 206(4): 605–19

    Article  PubMed  CAS  Google Scholar 

  212. Hamrén B. Safety and efficacy modelling in anti-diabetic drug development [PhD thesis]. Uppsala: Uppsala University, 2008

    Google Scholar 

  213. Bagust A, Beale S. Deteriorating beta-cell function in type 2 diabetes: a long-term model. QJM 2003 Apr; 96(4): 281–8

    Article  PubMed  CAS  Google Scholar 

  214. Kahn R. Dealing with complexity in clinical diabetes: the value of Archimedes. Diabetes Care 2003 Nov; 26(11): 3168–71

    Article  PubMed  Google Scholar 

  215. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998 May 12; 97(18): 1837–47

    Article  PubMed  CAS  Google Scholar 

  216. Brown JB, Russell A, Chan W, et al. The global diabetes model: user friendly version 3.0. Diabetes Res Clin Pract 2000 Nov; 50 Suppl. 3: S15–46

    Article  PubMed  Google Scholar 

  217. Eddy DM, Schlessinger L. Archimedes: a trial-validated model of diabetes. Diabetes Care 2003 Nov; 26(11): 3093–101

    Article  PubMed  Google Scholar 

  218. Eddy DM, Schlessinger L. Validation of the Archimedes diabetes model. Diabetes Care 2003 Nov; 26(11): 3102–10

    Article  PubMed  Google Scholar 

  219. Klinke 2nd DJ. Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng 2008 Feb; 36(2): 321–34

    Article  PubMed  Google Scholar 

  220. Young DL, Ramanujan S, Kreuwel HT, et al. Mechanisms mediating anti-CD3 antibody efficacy: insights from a mathematical model of type 1 diabetes. Ann N Y Acad Sci 2006 Oct; 1079: 369–73

    Article  PubMed  Google Scholar 

  221. Herman WH. Diabetes modeling. Diabetes Care 2003 Nov; 26(11): 3182–3

    Article  PubMed  Google Scholar 

  222. Schlessinger L, Eddy DM. Archimedes: a new model for simulating health care systems — the mathematical formulation. J Biomed Inform 2002 Feb; 35(1): 37–50

    Article  PubMed  Google Scholar 

  223. Mount Hood 4 Modeling Group. Computer modeling of diabetes and its complications: a report on the Fourth Mount Hood Challenge Meeting. Diabetes Care 2007 Jun; 30(6): 1638–46

    Article  Google Scholar 

  224. American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care 2004 Sep; 27(9): 2262–5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Drs Richard Almon and Debra DuBois for their critical review of the manuscript and valuable comments, and Prof. Amanda Almon for preparing the illustrations for figures 1 and 2. This work was supported by the UB-Pfizer Strategic Alliance. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landersdorfer, C.B., Jusko, W.J. Pharmacokinetic/Pharmacodynamic Modelling in Diabetes Mellitus. Clin Pharmacokinet 47, 417–448 (2008). https://doi.org/10.2165/00003088-200847070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200847070-00001

Keywords

Navigation