Skip to main content
Log in

Clinical Pharmacokinetics of Doxorubicin

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Doxorubicin (adriamycin) has a very wide antitumour spectrum, compared with other anticancer drugs; however, except for Hodgkin’s disease, it is not associated with curative chemotherapy. Doxorubicin has been in clinical use for more than 2 decades, and only recently has it been recognised that the cytotoxic effect is produced at the cellular level by multiple mechanisms which have not yet been conclusively identified. Key factors are a combination of doxorubicin-induced free radical formation due to metabolic activation, deleterious actions at the level of the membrane, and drug-intercalation into DNA.

Multiple aspects of the clinical pharmacokinetics of this drug have been described. Wide interpatient variations in plasma pharmacokinetics have been noted, but without firm relation to clinical outcome. An apparent volume of distribution of approximately 25 L/kg points to extensive uptake by tissues. Up to several weeks after administration, significant concentrations of doxorubicin have been found in haematopoietic cells and in several other tissues. The maximum cellular doxorubicin concentrations reached in vivo remain significantly below those at which all clonogenic leukaemic cells are killed in vitro.

Doxorubicin has been administered as frequent (weekly) low doses, single high doses, and as a continuous infusion. The optimal schedule with respect to tumour cytotoxicity and dose-limiting side effects such as myelosuppression or cardiotoxicity, has never been investigated in a prospective, randomised manner. Clinical trials large enough to study optimal, and possibly individualised, doxorubicin chemotherapy need to be performed.

This review summarises pharmacological and pharmacodynamic data of doxorubicin, and discusses these in relation to possible improvement of its therapeutic index. Furthermore, drug interactions, dose-response relationships, mechanisms of action, multidrug resistance, and treatment scheduling are discussed in the perspective of the development of novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arcamone F. Discovery and development of doxorubicin. In Arcamone F (Ed.) Doxorubicin, anticancer antibiotics, pp. 1–48, Academic Press, New York, 1981

    Google Scholar 

  • Arcamone F, Cassinelli G, Fantini G, et al. Doxorubicin, 14-hydroxy-daunomycin, a new antitumor antibiotic from S. peucetius. Biotechnology and Bioengineering 11: 1101–1104, 1969

    Article  PubMed  CAS  Google Scholar 

  • Arcamone F, Di Marco A, Gaetani M, Scotti T. Isolation and antitumour activity of an antibiotic, originated from Streptomyces species. Giornale Microbiologia 9: 83–90, 1961

    CAS  Google Scholar 

  • Aszalos A. Analysis of antitumor antibiotics by high pressure liquid chromatography. Journal of Liquid Chromatography 7: 69–125, 1984

    Article  CAS  Google Scholar 

  • Awidi AS, Tarawneh MS, Shubair KS, et al. Acute leukemia in pregnancy: report of five cases treated with a combination which included a low dose of doxorubicin. European Journal of Cancer and Clinical Oncology 19: 881–884, 1983

    Article  CAS  Google Scholar 

  • Bachur NR, Steele M, Meriwether ND, et al. Cellular pharmacodynamics of several anthracycline antibiotics. Journal of Medicinal Chemistry 19: 651–654, 1976

    Article  PubMed  CAS  Google Scholar 

  • Bailleul F, Levi F, Metzger G, et al. Chronotherapy of advanced breast cancer with continuous doxorubicin infusion via an implantable programmable device. Proceedings of the American Association for Cancer Research 28: Abstract no. 771, 1987

    Google Scholar 

  • Balkwill FR, Moodie EM. Positive interactions between human interferon and cyclophosphamide or doxorubicin in a human tumor model system. Cancer Research 44: 904–908, 1984

    PubMed  CAS  Google Scholar 

  • Barranco SC. Cellular and molecular effects of doxorubicin on dividing and nondividing cells. Pharmacology and Therapeutics 24: 303–319, 1984

    Article  PubMed  CAS  Google Scholar 

  • Baurain R, Deprez-De Campeneere, Zenebergh A, Trouet A. Plasma levels of doxorubicin after iv bolus injection and infusion of the doxorubicin-DNA complex in rabbits and man. Cancer Chemotherapy and Pharmacology 9: 93–96, 1982

    Article  PubMed  CAS  Google Scholar 

  • Benjamin RS, Riggs CE, Bachur NR. Plasma pharmacokinetics of adriamycin and its metabolites in humans with normal hepatic and renal function. Cancer Research 37: 1416–1420, 1977

    PubMed  CAS  Google Scholar 

  • Benjamin RS, Wiernik PH, Bachur NR. Doxorubicin, chemotherapy, efficacy, safety and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 33: 19–27, 1974

    Article  PubMed  CAS  Google Scholar 

  • Benvenuto JA, Adams SC, Vyas HM, Anderson RW. Pharmaceutical issues in infusion chemotherapy stability and compatibility. In Lokich JJ (Ed.) Cancer chemotherapy by infusion, pp. 100–113, Precept Press, Chicago, 1987

    Chapter  Google Scholar 

  • Berens ME, Saito T, Welander CE, Modest EJ. Antitumor activity of new anthracycline analogues in combination with interferon alfa. Cancer Chemotherapy and Pharmacology 19: 301–306, 1987

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Riehm H. Cellular resistance to actinomycin-D in Chinese hamster cells in vitro: cross-resistance, radioautographic and cytogenetic studies. Cancer Research 30: 1174–1184, 1970

    PubMed  CAS  Google Scholar 

  • Bigotte L, Arvidson B, Olsson Y. Cytofluorescence localization of adriamycin in the nervous system, I: distribution of the drug in the central nervous system of normal adult mice after intravenous injection. Acta Neuropathologica (Berlin) 57: 121–129, 1982

    Article  CAS  Google Scholar 

  • Billingham ME, Mason JW, Bristow MR, Daniels KR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treatment Reports 62: 865–872, 1978

    PubMed  CAS  Google Scholar 

  • Bolanowska W, Gessner T. Body residue and metabolism of adriamycin and daunorubicin in control and phenobarbital-pretreated mice. Xenobiotica 12: 125, 1982

    Article  PubMed  CAS  Google Scholar 

  • Boston RC, Philips DR. Evidence of possible dose-dependent doxorubicin plasma kinetics in man. Cancer Treatment Reports 67: 63–69, 1983

    PubMed  CAS  Google Scholar 

  • Bouma J, Beijnen JH, Bult A, Underberg WJM. Anthracycline antitumor agents: a review of physico-chemical and analytical properties as well as stability. Pharmaceutisch Weekblad, Scientific Edition 8: 109–133, 1986

    Article  CAS  Google Scholar 

  • Brade WP, Freireich EJ, Goldin A. Dose-response relationship in experimental and clinical oncology. Cancer Treatment Reviews 11: 279–283, 1984

    Article  PubMed  CAS  Google Scholar 

  • Brenner DE, Wiernik PH, Wesley M, Bachur NR. Acute doxorubicin toxicity: relationship to pretreatment liver function, response, and pharmacokinetics in patients with acute nonlymphocytic leukemia. Cancer 53: 1042–1048, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bruce WR, Meeker BE, Valeriote FA. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony forming cells to chemotherapeutic agents administered in vivo. Journal of the National Cancer Institute 37: 233–245, 1960

    Google Scholar 

  • Carr B, Thall A, Doroshow JH. Doxorubicin inhibits the binding of 125I-epidermal growth factor to rat hepatocytes and inhibits EGF-induced DNA-synthesis. Proceedings of the American Association for Cancer Research 27: Abstract 969, 1986

  • Celio LA, DiGregorio GJ, Ruch E, et al. Doxorubicin and 5-fluorouracil plasma concentrations and detectability in parotid saliva. European Journal of Clinical Pharmacology 24: 261–266, 1983

    Article  PubMed  CAS  Google Scholar 

  • Chan KK, Chlebowski RT, Tong M, et al. Clinical pharmacokinetics of adriamycin in hepatoma patients with cirrhosis. Cancer Research 40: 1263–1268, 1980

    PubMed  CAS  Google Scholar 

  • Chan KK, Cohen JL, Gross JF, et al. Prediction of adriamycin disposition in cancer patients using a physiologic, pharmacokinetic model. Cancer Treatment Reports 62: 1161–1171, 1978

    PubMed  CAS  Google Scholar 

  • Chang P, Riggs CE, Scheerer MT, et al. Combination chemotherapy with adriamycin and streptozotocin, II: clinicopharmacologic correlation of augmented adriamycin toxicity caused by streptozotocin. Clinical Pharmacology and Therapeutics 20: 611–616, 1976

    PubMed  CAS  Google Scholar 

  • Chlebowski RT, Brzechwa-Adjukiewicz A, Cowden A, et al. Doxorubicin (75 mg/sq. m.) for hepatocellular carcinoma: clinical and pharmacokinetic results. Cancer Treatment Reports 68: 487–491, 1984

    PubMed  CAS  Google Scholar 

  • Creagan ET, Long HJ, Frytak S, Moertel CG. Recombinant leukocyte A interferon with doxorubicin: a phase I study in advanced solid neoplasms and implications for hepatocellular carcinoma. Cancer 61: 19–22, 1988

    Article  PubMed  CAS  Google Scholar 

  • Crom WR, Glynn-Barnhart AM, Rodman JH, et al. Pharmacokinetics of anticancer drugs in children. Clinical Pharmacokinetics 12: 168–213, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cummings J, Forrest GJ, Cunningham D, Gilchrist NL, Soukop M. Influence of polysorbate 80 (tween 80) and etoposide (VP-16-213) on the pharmacokinetics and urinary excretion of adriamycin and its metabolites in cancer patients. Cancer Chemotherapy and Pharmacology 17: 80–84, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cummings J, McArdle CS. Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. British Journal of Cancer 53: 835–838, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dessypyris EN, Brenner DE, Krantz SB, Hande KR. Toxicity of adriamycin metabolites to human bone marrow erythroid and myeloid progenitors in vitro. Proceedings of the American Association for Cancer Research 25: Abstract no. 1203, 1984

  • DiFronzo G, Lenaz L, Bonadonna G. Distribution and excretion of adriamycin in man. Biomedicine 19: 169–171, 1973

    Google Scholar 

  • Di Marco A. Anthracyclines in cancer chemotherapy. Drugs in Experimental and Clinical Research 9: 751–765, 1983

    Google Scholar 

  • Di Marco A, Gaetani M, Dorigotti L, et al. Daunomycin: a new antibiotic with antitumor activity. Cancer Chemotherapy Reports 38: 31–38, 1964

    Google Scholar 

  • Di Marco A, Gaetani M, Scarpinato B. Doxorubicin: a new antibiotic with antitumor activity. Cancer Chemotherapy Reports 53: 33–37, 1969

    Google Scholar 

  • Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research 43: 460–472, 1983

    PubMed  CAS  Google Scholar 

  • Egan PC, Costanza ME, Dodion P, et al. Doxorubicin and cisplatin excretion into human milk. Cancer Treatment Reports 69: 1387–1389, 1985

    PubMed  CAS  Google Scholar 

  • Ehninger G, Stocker HJ, Proksch B, Wilms K. Die Pharmacokinetik von Adriamycin und Adriamycin-Metaboliten. Klinische Wochenschrifte 58: 927–934, 1980

    Article  CAS  Google Scholar 

  • Eksborg S, Cedermark BJ, Strandler HS. Intrahepatic and intravenous administration of adriamycin: a comparative pharmacokinetic study in patients with malignant liver tumours. Medical Oncology and Tumor Pharmacotherapy 2: 47–52, 1985a

    PubMed  CAS  Google Scholar 

  • Eksborg S, Ehrsson H. Drug level monitoring: cytostatics. Journal of Chromatography 340: 31–72, 1985

    Article  PubMed  CAS  Google Scholar 

  • Eksborg S, Lindfors A, Cedermark BJ. Plasma pharmacokinetics of adriamycin after intrapleural administration. Medical Oncology Tumor Pharmacotherapy 1: 193–194, 1984

    CAS  Google Scholar 

  • Eksborg S, Strandler HS, Edsmyr F, et al. Pharmacokinetic study of iv infusions of adriamycin. European Journal of Clinical Pharmacology 28: 205–212, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Engelmann UH, Jacobi GH. Intravesical adriamycin instillations: what happens to the drug? Progress in Clinical and Biological Research 185B: 95–104, 1985

    PubMed  CAS  Google Scholar 

  • Evans WE, Crom WR, Yee Gr. Adriamycin pharmacokinetics in children. Proceedings of the American Association for Cancer Research 21: Abstract no. 176, 1980

  • Fassas A, Kartalis G, Klearchou N, et al. Chemotherapy for acute leukemia during pregnancy: five case reports. Nouvelle Revue Française Hematologique 26: 19–24, 1984

    CAS  Google Scholar 

  • Foa P, Cofrancesco E, Lombardi L, et al. Non interference by heparin with the cytostatic effect of adriamyin: an in vitro study on a human promyelocytic leukaemia cell line. British Journal of Cancer 48: 735–738, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Ogawa K, Tone H, et al. Pharmacokinetics of doxorubicin, (2″R)-4′-o-tetrahydropyranyl-adriamycin and aclarubicin. Japanese Journal of Antibiotics 39: 1321–1336, 1986

    PubMed  CAS  Google Scholar 

  • Furue H. Drug interactions with anticancer agents. Gan to Kagaku Ryoho 12: 2231–2236, 1985

    PubMed  CAS  Google Scholar 

  • Garnick MB, Weiss GR, Steele GD, et al. Clinical evaluation of long-term, continuous-infusion doxorubicin. Cancer Treatment Reports 67: 133–142, 1983

    PubMed  CAS  Google Scholar 

  • Gil P, Favre R, Durand A, et al. Time dependency of adriamycin and adriamycinol kinetics. Cancer Chemotherapy and Pharmacology 10: 120–124, 1983

    Article  PubMed  CAS  Google Scholar 

  • Giuliani F, Casarra AM, Di Marco A. Viorologic and immunologic properties and response to daunomycin and adriamycin of a non-regressing mouse tumour derived from MSV-induced sarcoma. Biomedicine 21: 435–439, 1974

    PubMed  CAS  Google Scholar 

  • Goodman GE, Yen YP, Cox TC, Crowley J. Effect of verapamil on in vitro cytotoxicity of adriamycin and vinblastine in human tumor cells. Cancer Research 47: 2295–2304, 1987

    PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Pollakis G, Ruysschaert JM. Mitochondrial membrane modification induced by adriamycin-mediated electron transport. Biochemical Pharmacology 32: 889–893, 1983

    Article  PubMed  CAS  Google Scholar 

  • Grace T, Kimberly P, Hacker M, Tritton T. Stimulation of growth by adriamycin. Proceedings of the American Association for Cancer Research 28: Abstract no. 1052, 1987

  • Green MD, Speyer JL, Stecy P, et al. ICRF-187 prevents doxorubicin cardiotoxicity: results of a randomized clinical trial. Proceedings of the American Society of Clinical Oncology 6: Abstract no. 104, 1987

  • Greene RF, Collins JM, Jenkins JF, et al. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Research 43: 3417–3421, 1983

    PubMed  CAS  Google Scholar 

  • Gunven P, Theve NO, Peterson C. Serum and tissue concentrations of doxorubicin after iv administration of doxorubicin or doxorubicin-DNA complex to patients with gastrointestinal cancer. Cancer Chemotherapy and Pharmacology 17: 153–156, 1986

    Article  PubMed  CAS  Google Scholar 

  • Haq MM, Legha SS, Choski J, et al. Doxorubicin-induced congestive heart failure in adults. Cancer 56: 1361–1365, 1985

    Article  PubMed  CAS  Google Scholar 

  • Harris PA, Gross JF. Preliminary pharmacokinetic model for adriamycin. Cancer Chemotherapy Reports 59: 819–825, 1975

    CAS  Google Scholar 

  • Hrushesky WJM. Circadian timing of cancer chemotherapy. Science 228: 73–75, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hrusehsky WJM. Circadian scheduling of chemotherapy increases ovarian patient survival and cancer responses significantly. Proceedings of the American Society of Clinical Oncology 6: Abstract no. 473, 1987

  • Johnston JB, Glazer RI. Cellular and molecular pharmacology of sugar amine-modified anthracyclines. In Glazer RI (Ed) Developments in cancer chemotherapy, pp. 166–176, CRC Press Inc., Boca Raton, 1984

    Google Scholar 

  • Jones RB, Holland JF, Bhardwaj S, et al. A Phase I–II study of intensive-dose adriamycin for advanced breast cancer. Journal of Clinical Oncology 5: 172–177, 1987

    PubMed  CAS  Google Scholar 

  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica Biophysica Acta 455: 152–162, 1976

    Article  CAS  Google Scholar 

  • Kalyanaraman B, Sealy RC, Sinha BK. An ESR study of the reductin of peroxides by anthracycline semiquinones. Biochimica Biophysica Acta 799: 270–285, 1984

    Article  CAS  Google Scholar 

  • Karp GI, Van Oeyen P, Valone F, et al. Doxorubicin in pregnancy: possible transplacental passage. Cancer Treatment Reports 67: 773–777, 1983

    PubMed  CAS  Google Scholar 

  • Kerr DJ, Graham J, Cummings J, et al. The effect of verapamil on the pharmacokinetics of adriamycin. Cancer Chemotherapy and Pharmacology 18: 239–242, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kerr DJ, Kaye SB. Aspects of cytotoxic drug penetration with particular reference to anthracyclines. Cancer Chemotherapy and Pharmacology 19: 1–5, 1987

    Article  PubMed  CAS  Google Scholar 

  • Kovach J. Pharmacokinetic studies of anticancer agents during phase I trials. In Ames et al. (Eds) Pharmacokinetics of anticancer agents in humans, p. 450, Elsevier, Amsterdam, 1983

    Google Scholar 

  • Krugh TR, Young MA. Daunomycin and adriamycin facilitate actinomycin D binding to poly(dA-dT)poly(dA-dT). Nature (London) 269: 627–628, 1977

    Article  CAS  Google Scholar 

  • Kuhlmann J. Digitalisierung bei zytostatischer Therapy. Deutsche Medizinischen Wochenschrift 106: 468–470, 1981

    Article  Google Scholar 

  • Kummen M, Lie KK, Lie SO. A pharmacokinetic evaluation of free and DNA-complexed adriamycin: a preliminary study in children with malignant disease. Acta Pharmacologica et Toxicologica 42: 212–218, 1978

    Article  PubMed  CAS  Google Scholar 

  • Lahtinen R, Uusitupa M, Kuikka J, Laensimies E. Non-invasive evaluation of anthracycline-induced cardiotoxicity in man. Acta Medica Scandinavica 212: 201–206, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lane P, Vichi P, Bain DL, Tritton TR. Temperature dependence studies of adriamycin uptake and cytotoxicity. Cancer Research 47: 4038–4042, 1987

    PubMed  CAS  Google Scholar 

  • Lawrence HJ, Goodnight SH. Dimethyl sulfoxide in extravasation of anthracycline agents. Annals of Internal Medicine 98: 1026–1027, 1983

    Google Scholar 

  • Lazo JS, Schwartz PE. Rapid distribution of adriamycin in the ascitic and pleural fluid of women with ovarian carcinomas. Gynecology-Oncology 21: 65–72, 1985

    Article  CAS  Google Scholar 

  • Lee YN, Chan KK, Harris IH, Cohen JL. Distribution of ADM in cancer patients, tissue uptakes, plasma concentrations after intravenous and hepatic intraarterial administration. Cancer 45: 2231–2239, 1980

    Article  PubMed  CAS  Google Scholar 

  • Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Annals of Internal Medicine 96: 133–139, 1982

    PubMed  CAS  Google Scholar 

  • Legha SS, Hortobagyi GN, Benjamin RS. Anthracyclines. In Lokich JJ (Ed) Cancer chemotherapy by infusion, pp. 100–113, Precept Press, Chicago, 1987

    Google Scholar 

  • Liu LF, Rowe TC, Yang KM, et al. Cleavage of DNA by mammalian DNA topoisomerase II. Journal of Biological Chemistry 258: 15365–15370, 1983

    PubMed  CAS  Google Scholar 

  • Loveless H, Arena E, Felsted RL, Bachur NR. Comparative mammalian metabolism of adriamycin and daunorubicin. Cancer Research 38: 589–593, 1978

    Google Scholar 

  • Lown JW. Molecular mechanisms of action of anticancer agents involving free radical intermediates. Advances in Free Radical Biology and Medicine 1: 225–264, 1985

    Article  CAS  Google Scholar 

  • Maral RJ, Jouanne M. Toxicology of daunorubicin in animals and man. Cancer Treatment Reports 65 (Suppl. 4): 9–18, 1981

    PubMed  CAS  Google Scholar 

  • Matzel W, Buechel O. Diffuse malignant mesothelioma of the pleura: intrapleural treatment with doxorubicin. Archiv für Geschwulstforschung 57: 209–218, 1987

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Gram TE, Trush MA. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers. Journal of Pharmacology and Experimental Therapeutics 226: 806–816, 1983

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Trush MA, Gram TE. A possible role for membrane lipid peroxidation in anthracycline nephrotoxicity. Biochemical Pharmacology 35: 4327–4335, 1986

    Article  PubMed  CAS  Google Scholar 

  • Mooney C, Thomas DCT, Souhami RL. Adriamycin in the treatment of relapsed primary malignant brain tumours. European Journal of Cancer and Clinical Oncology 19: 1037–1038, 1983

    Article  CAS  Google Scholar 

  • Moore MJ, Ehrlichman C. Therapeutic drug monitoring in oncology: problems and potential in antineoplastic therapy. Clinical Pharmacokinetics 13: 205–227, 1987

    Article  PubMed  CAS  Google Scholar 

  • Muggia FM, Young CW, Carter SK (Eds). Anthracycline antibiotics in cancer therapy, Martinus Nijhoff Publishers, The Hague, 1982

    Google Scholar 

  • Muindi JRF, Sinha BK, Gianni L, Myers CE. Hydroxyl radical production and DNA damage by anthracyclines. FEBS Letters 172: 226–230, 1984

    Article  PubMed  CAS  Google Scholar 

  • Murphree SA, Tritton TR, Smith PL, Sartorelli AC. Adriamycin-induced changes in the surface of sarcoma 180 ascites cells. Biochimica Biophysica Acta 649: 317–324, 1981

    Article  CAS  Google Scholar 

  • Myers CE. Anthracyclines. In Pinedo & Chabner (Eds) Cancer chemotherapy, Vol. 8, pp. 52–64, Elsevier, Amsterdam, 1986

    Google Scholar 

  • Myers CE. The anthracyclines. In Pinedo & Chabner (Eds) Cancer chemotherapy and biological response modifiers, Vol. 9, pp. 36–49, Elsevier, Amsterdam, 1987

    Google Scholar 

  • Myers CE, Mimnaugh E, Yeh G, Sinha BK. Biochemical mechanisms of tumor cell kill by the anthracyclines. In Lown (Ed.) Anthracyclines in press, 1988

    Google Scholar 

  • Ogawa M, Muggia FM, Rozencweig M (Eds). Adriamycin, its expanding role in cancer treatment, International congress series no. 629, Excerpta Medica, Amsterdam, 1984

    Google Scholar 

  • Oosterbaan MJM, Dirks RJM, Vree TB, et al. Klinische pharmacokinetiek van adriamycine. Journal of Drug Research 7: 1372–1378, 1982

    Google Scholar 

  • Oosterbaan MJM, Dirks RJM, Vree TB, Van der Kleijn E. Pharmacokinetics of anthracyclines in dogs: evidence for structure-related body distribution and reduction to their hydroxy metabolites. Pharmaceutical Research 1: 33–38, 1984

    Article  Google Scholar 

  • Ozols RF, Hogan WM, Grotzinger KR, McCoy W, Young RC. Effects of amphotericin B on adriamycin and melphalan cytotoxicity in human and murine ovarian carcinoma and in L1210 leukemia. Cancer Research 43: 959–964, 1983

    PubMed  CAS  Google Scholar 

  • Ozols RF, Young RC, Speyer JL, et al. Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Research 42: 4265–4269, 1982

    PubMed  CAS  Google Scholar 

  • Pavone-Macaluso M, Ingargiola GB, Tripi M, Lamartina M. Treatment of bladder cancer with intravesical instillation of adriamycin. Progress in Clinical and Biological Research 162B: 181–191, 1984

    PubMed  CAS  Google Scholar 

  • Peterson C, Gunven P, Theve NO. Comparative pharmacokinetics of doxorubicin and epirubicin in patients with gastrointestinal cancer. Cancer Treatment Reports 70: 947–952, 1986

    PubMed  CAS  Google Scholar 

  • Peterson C, Paul C. Pharmacokinetics of doxorubicin and daunorubicin in the treatment of acute leukemia. In Hansen HH (Ed.) Anthracyclines and cancer therapy, pp. 7–17, Excerpta Medica, Amsterdam, 1983

    Google Scholar 

  • Pfeifle CE, Howell SB, Ashburn WL, Barone RM. Pharmacologic studies of intra-hepatic artery chemotherapy with degradable starch microspheres. Cancer Drug Delivery 3: 1–14, 1986

    Article  PubMed  CAS  Google Scholar 

  • Potmesil M, Kirshenbaum S, Israel M, et al. Relationship of adriamycin concentrations to the DNA lesions induced in hypoxic and euoxic L1210 cells. Cancer Research 43: 3528–3532, 1983

    PubMed  CAS  Google Scholar 

  • Powis G. Anticancer drug pharmacodynamics. Cancer Chemotherapy and Pharmacology 14: 177–183, 1985

    Article  PubMed  CAS  Google Scholar 

  • Praga C, Beretta G, Vigo PL, et al. Adriamycin cardiotoxicity: a survey of 1273 patients. Cancer Treatment Reports 63: 827–834, 1979

    PubMed  CAS  Google Scholar 

  • Pressant CA, Metter GE, Multhauf P, et al. Effects of amphotericin B with combination chemotherapy on response rates and on survival in non-small cell carcinoma of the lung. Cancer Treatment Reports 68: 651–654, 1984

    Google Scholar 

  • Rahman A, Roh JK, Treat J, et al. Clinical pharmacology of liposome encapsulated doxorubicin (LED) in phase I trials. Proceedings of the American Society of Clinical Oncology 6: Abstract no. 117–118, 1987

  • Raijmakers R, Speth P, De Witte T, et al. Infusion-rate independent cellular adriamycin concentrations and cytotoxicity to human bone marrow clonogenic cells (CFU-GM). British Journal of Cancer 56: 123–126, 1987

    Article  PubMed  CAS  Google Scholar 

  • Razak E, Valeriote F, Vietti T. Survival of hematopoietic and leukemia colony forming cells in vitro following the administration of daunorubicin or adriamycin. Cancer Research 32: 1496–1500, 1972

    Google Scholar 

  • Reich SD, Bachur NR. Alterations in adriamycin efficacy by phenobarbital. Cancer Research 36: 3803–3808, 1976

    PubMed  CAS  Google Scholar 

  • Riggs CE, Bachur NR. Clinical pharmacokinetics of anthracycline antibiotics. In Ames et al. (Eds) Pharmacokinetics of anticancer agents in humans, pp. 229–278, Elsevier, Amsterdam, 1983

    Google Scholar 

  • Riordan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacology and Therapeutics 28: 51–75, 1985

    Article  PubMed  CAS  Google Scholar 

  • Robert J, Hoerni B. Age dependence of the early-phase pharmacokinetics of doxorubicin. Cancer Research 43: 4467–4469, 1983

    PubMed  CAS  Google Scholar 

  • Rudolph R, Larson DL. Etiology and treatment of chemotherapeutic agent extravasation injuries: a review. Journal of Clinical Oncology 5: 1116–1126, 1987

    PubMed  CAS  Google Scholar 

  • Russo P, Favoni RE, Zarcone D, et al. Doxorubicin cytotoxicity to P388 lymphocytic leukemia as determined by alkaline elution and established assays. Anticancer Research 6: 1297–1304, 1986b

    PubMed  CAS  Google Scholar 

  • Russo A, Tochner Z, Philips J, et al. In vivo modulation of glutathione by buthionine sulfoximine effect in marrow response to melphalan. International Journal of Radiation Oncology, Biology and Physics 12: 1187–1189, 1986a

    Article  CAS  Google Scholar 

  • Siegfried JA, Kennedy KA, Sartorelli AC, Tritton TR. The role of membranes in the mechanism of action of the antineoplastic agent adriamycin. Journal of Biological Chemistry 258: 339–343, 1983

    PubMed  CAS  Google Scholar 

  • Sinha BK, Trush MA, Kennedy KA, Mimnaugh EG. Enzymatic activation and binding of adriamycin to nuclear DNA. Cancer Research 44: 2892–2896, 1984

    PubMed  CAS  Google Scholar 

  • Sinkule JA, Buchsbaum DJ, Foon K, et al. Therapeutic potential of doxorubicin/antibody/radionuclide conjugates in a B-cell lymphoma model. Proceedings of the American Association for Cancer Research 28: Abstract no. 1575, 1987

    Google Scholar 

  • Skovsgaard T. Carrier-mediated transport of daunorubicin, adriamycin and rubidazone in Ehrlich ascites tumor cells. Biochemical Pharmacology 27: 1221–1227, 1978

    Article  PubMed  CAS  Google Scholar 

  • Skovsgaard T, Nissen N. Membrane transport of anthracyclines. Pharmacology and Therapeutics 18: 293–311, 1982

    Article  PubMed  CAS  Google Scholar 

  • Speth PAJ, Linssen PCM, Boezeman JBM, et al. Quantitation of anthracyclines in human hematopoietic cell subpopulations by flow cytometry correlated with high pressure liquid chromatography. Cytometry 6: 143–150, 1985

    Article  PubMed  CAS  Google Scholar 

  • Speth PAJ, Linssen PCM, Boezeman, JBM, et al. Cellular and plasma adriamycin concentrations in long-term infusion therapy of leukemia patients. Cancer Chemotherapy and Pharmacology 20: 305–310, 1987b

    PubMed  CAS  Google Scholar 

  • Speth PAJ, Linssen PCM, Holdrinet RSG, Haanen C. Plasma and cellular adriamycin concentrations in patients with myeloma treated with ninety-six-hour continuous infusion. Clinical Pharmacology and Therapeutics 41: 661–665, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Speth PAJ, Raijmakers RAP, Boezeman JBM, et al. In vivo cellular adriamycin concentrations related to growth inhibition of normal and leukemic bone marrow cells. European Journal of Cancer and Clinical Oncology 24: 667–674, 1988

    Article  CAS  Google Scholar 

  • Sulkes A, Collins JM. Reappraisal of some dosage adjustment guidelines. Cancer Treatment Reports 71: 229–233, 1987

    PubMed  CAS  Google Scholar 

  • Takagi T, Oguro M. (2″-R)-4′-0-tetrahydropyranyladriamycin, a new anthracycline derivative: its effectiveness in lymphoid malignancies. Cancer Chemotherapy and Pharmacology 20: 151–154, 1987

    Article  PubMed  CAS  Google Scholar 

  • Takanashi S, Bachur NR. Adriamycin metabolism in man, evidence for urinary metabolites. Drug Metabolism and Disposition 4: 79–87, 1976

    PubMed  CAS  Google Scholar 

  • Tanaka M, Yoshida S. Mechanism of the inhibition of calf thymus DNA polymerases α and β by daunomycin and adriamycin. Journal of Biochemistry 87: 911–918, 1980

    PubMed  CAS  Google Scholar 

  • Timour Q, Nony P, Lang J, et al. Doxorubicin concentration time course in the myocardium after single administration to the dog. Cancer Chemotherapy and Pharmacology 20: 267–269, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson E, Malspeis L. Concomitant absorption and stability of some anthracycline antibiotics. Journal of Pharmaceutical Sciences 71: 1121–1125, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tritton TR, Yee G. The anticancer agent can be actively cytotoxic without entering the cells. Science 217: 248–250, 1982

    Article  CAS  Google Scholar 

  • Tsuruo T. Reversal of acquired resistance to vinca alkaloids and anthracycline antibiotics. Cancer Treatment Reports 67: 889–894, 1983

    PubMed  CAS  Google Scholar 

  • Twentyman PR, Fox NE, White DJ. Cyclosporin A and its analogues as modifiers of adriamycin and vincristine resistance in a multi-drug resistant human lung cancer cell line. British Journal of Cancer 56: 55–57, 1987

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesel QGCM. Activity and reduced toxicity of liposome entrapped doxorubicin, Ph.D. Thesis, Nijmegen University. Nijmegen, 1985

    Google Scholar 

  • Van Hoesel QGCM, Steerenberg PA, Crommelin DJA, et al. Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes. Cancer Research 44: 3698–3705, 1984

    PubMed  Google Scholar 

  • Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine 91: 710–717, 1979

    Google Scholar 

  • Van Sloten K, Aisner J. Treatment of chemotherapy extravasation: current status. Cancer Treatment Reports 68: 939–945, 1984

    Google Scholar 

  • Weiss RB, Sarosy G, Clagett-Carr K, Russo M, Leyland-Jones B. Anthracyclines analogs: the past, present, and future. Cancer Chemotherapy and Pharmacology 18: 185–197, 1986

    Article  PubMed  CAS  Google Scholar 

  • Welander CE, Morgan TM, Homesley HD, Trotta PP, Spigel RJ. Combined recombinant human interferon alpha-2 and cytotoxic agents studied in a clonogenic assay. International Journal of Cancer 35: 721–729, 1985

    Article  CAS  Google Scholar 

  • Widder KJ, Senyei AE, Ranney DF. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Research 40: 3512–3517, 1980

    PubMed  CAS  Google Scholar 

  • Wright JC. Cancer chemotherapy: past, present, and future — Part I. Journal of the National Medical Association 76: 773–784, 1984

    PubMed  CAS  Google Scholar 

  • Yeh GC, Occhipinti SJ, Phang JM, et al. Deficient glucose-6-phosphate dehydrogenase activity in adriamycin resistant tumor cell (MCF-7): a redox-dependent mechanism for adriamycin resistance. Proceedings of the American Association for Cancer Research 27: Abstract 1075, 1986

  • Yesair DW, Schwartzbach E, Shuck D, et al. Comparative pharmacokinetics of daunomycin and adriamycin in several animal species. Cancer Research 32: 1177–1183, 1972

    PubMed  CAS  Google Scholar 

  • Young RC, Ozols RF, Myers CE. The anthracycline neoplastic drugs. New England Journal of Medicine 305: 139–153, 1981

    Article  PubMed  CAS  Google Scholar 

  • Zubrod CG. Historic milestones in curative chemotherapy. Seminars in Oncology 6: 490–505, 1979

    PubMed  CAS  Google Scholar 

  • Zunino F, Gambetta R, Di Marco A. The inhibition in vitro of DNA polymerase and RNA polymerase by daunomycin and adriamycin. Biochemistry and Pharmacology 24: 309–311, 1975b

    Article  CAS  Google Scholar 

  • Zunino F, Gambetta R, Di Marco A, Zaccara A, Luoni G. A comparison of the effects of daunomycin and adriamycin on various DNA polymerases. Cancer Research 35: 754–760, 1975a

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speth, P.A.J., van Hoesel, Q.G.C.M. & Haanen, C. Clinical Pharmacokinetics of Doxorubicin. Clin-Pharmacokinet 15, 15–31 (1988). https://doi.org/10.2165/00003088-198815010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198815010-00002

Keywords

Navigation