Skip to main content
Log in

Fatty acid uptake and incorporation in brain

Studies with the perfusion model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The contributions of individual components of blood to brain [14C]palmitate uptake and incorporation were studied with the in situ brain perfusion technique in the pentobarbital-anesthetized rat. With whole-blood perfusate, brain unacylated [14C]palmitate uptake was linear with time and extrapolated to zero at T=0 s of perfusion. Tracer accumulated in brain with a blood-to-brain transfer coefficient of 1.8 ± 0.1 × 10−4 mL/s/g (whole cerebral hemisphere). Incorporation into brain lipids was rapid such that ∼40% of tracer in brain at 45 s of perfusion was in cerebral phospholipids and neutral lipids. Similar rates of uptake were obtained during unacylated [14C]palmitate perfusion in whole rat plasma, serum, or artificial saline containing 2–3% albumin, suggesting that albumin has a key role in determining [14C]palmitate uptake in brain. The excellent match in brain uptake rates between whole blood and albumin-containing saline fluid suggests that the perfusion technique will be useful method for quantifying the individual contributions of blood constituents and albumin binding on brain [14C]palmitate uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agranoff B. W., Benjamins J. A., and Hajra A. K. (1999) Lipids, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed. (Siegal, G.J., et al., ed.), Lippincott-Raven, Philadelphia, PA, pp. 47–67.

    Google Scholar 

  • Alberghina M., Infarinato S., Anfuso C. D., and Lupo G. (1994) 1-Acyl-2-lysophosphatidylcholine transport across the blood-retina and blood-brain barrier. FEBS Lett. 351, 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Bernoud N., Fenart L., Molière P., Dhouck M-P., Lagarde M., Cecchelli R., and Lecerf, J. (1999) Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidyl-choline through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J. Neurochem. 72, 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Brecher P. and Kuan H-T. (1979) Lipoprotein lipase and acid lipase activity in the rabbit brain microvessels. J. Lipid Res. 20, 464–471.

    PubMed  CAS  Google Scholar 

  • Edmond J., Higa T. A., Korsak R. A., Bergner E. A., and Lee W.-N. P. (1998) Fatty acid transport and utilization for the developing brain. J. Neurochem. 70, 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • DeGeorge J. J., Noronha J. G., Bell J., Robinson P., and Rapoport S. I. (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci Res. 24, 413–423.

    Article  PubMed  CAS  Google Scholar 

  • Dhopeshwarkar G. A. and Mead J.F. (1973) Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11, 109–142.

    PubMed  CAS  Google Scholar 

  • Grange E., Deutsch J., Smith Q. R., Chang M., Rapoport S. I., and Purdon A. D. (1995) Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in wake rats. J. Neurochem. 65, 2290–2298.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton J. A. and Kamp F. (1999) How are free fatty acids transported in membranes? Diabetes 48, 2255–2269.

    Article  PubMed  CAS  Google Scholar 

  • Kimes A. S., Sweeney D., and Rapoport S. I. (1985) Brain palmitate incorporation in awake and anesthetized rats. Brain Res. 341, 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Marbois N. B., Ajie H. O., Korsak R. A., Sensharma D. K., and Edmond J. (1992) The origin of palmitic acid in brain of the developing rat. Lipids 27, 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Méresse S., Delbart C., Fruchart J-C., and Cecchelli R. (1989) Low-density lipoprotein receptor on endothelium of brain capillaries. J. Neurochem. 53, 340–345.

    Article  PubMed  Google Scholar 

  • Noronha J. G., Bell J. M., and Rapoport S. I. (1990) Quantitative brain autoradiography of [9,10-3H] palmitic acid incorporation into brain lipids. J. Neurosci. Res. 26, 196–208.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge W. M. and Mietus L. J. (1980) Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem. 34, 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Rabin O., Hegedus L., Bourre J. M., and Smith Q. R. (1993) Rapid brain uptake of manganese (II) across the blood-brain barrier. J. Neurochem. 61, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Richieri G. V., Anel A., and Kleinfeld A. (1993) Interactions of long-chain fatty acid and albumin: determination of free fatty acid levels using the fluorescent probe AD1-FAB. Biochemistry 32, 7574–7579

    Article  PubMed  CAS  Google Scholar 

  • Robinson P. J., Noronha J., DeGeorge J. J., Freed L. M., Nariai T., and Rapoport S. I. (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Rev. 17, 187–214.

    Article  PubMed  CAS  Google Scholar 

  • Smith Q. R. (1996) Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharmaceut. Biotech. 8, 285–308.

    CAS  Google Scholar 

  • Spector A. A. (1986) Structure and lipid-binding properties of serum albumin. Meth Enzymol. 128, 320–339.

    Article  PubMed  CAS  Google Scholar 

  • Spector R. (1998) Fatty acid transport through the blood-brain barrier. J. Neurochem. 50, 639–643.

    Article  Google Scholar 

  • Takasato Y., Rapoport S. I., and Smith Q. R. (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 246, H484-H493.

    Google Scholar 

  • Thiès F., Delachambre M. C., Bentejac M., Lagarde M., and Lecerf J. (1992) Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J. Neurochem. 59, 1110–1116.

    Article  PubMed  Google Scholar 

  • Wosilait W. D. and Soler-Argilaga C. (1975) A theoretical analysis of the multiple binding of palmitate by bovine serum albumin: the relationship to uptake of free fatty acids by tissues. Life Sci. 17, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S., DeGeorge J. J., Bell J., and Rapoport S. I. (1994) Effects of pentobarbital on incorporation of plasma palmitate into rat brain. Anesthesiology 80, 151–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin R. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, Q.R., Nagura, H. Fatty acid uptake and incorporation in brain. J Mol Neurosci 16, 167–172 (2001). https://doi.org/10.1385/JMN:16:2-3:167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:167

Index Entries

Navigation