Skip to main content
Log in

Synthesis and Pharmacological Evaluation of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a Cocaine Antagonist, in Rodents

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cocaine interacts with monoamine transporters and sigma (σ) receptors, providing logical targets for medication development. In the present study, in vitro and in vivo pharmacological studies were conducted to characterize SN79, a novel compound which was evaluated for cocaine antagonist actions. Radioligand binding studies showed that SN79 had a nanomolar affinity for σ receptors and a notable affinity for 5-HT2 receptors, and monoamine transporters. It did not inhibit major cytochrome P450 enzymes, including CYP1A2, CYP2A6, CYP2C19, CYP2C9*1, CYP2D6, and CYP3A4, suggesting a low propensity for potential drug–drug interactions. Oral administration of SN79 reached peak in vivo concentrations after 1.5 h and exhibited a half-life of just over 7.5 h in male, Sprague–Dawley rats. Behavioral studies conducted in male, Swiss Webster mice, intraperitoneal or oral dosing with SN79 prior to a convulsive or locomotor stimulant dose of cocaine led to a significant attenuation of cocaine-induced convulsions and locomotor activity. However, SN79 produced sedation and motor incoordination on its own at higher doses, to which animals became tolerant with repeated administration. SN79 also significantly attenuated the development and expression of the sensitized response to repeated cocaine exposures. The ability of SN79 to significantly attenuate the acute and subchronic effects of cocaine provides a promising compound lead to the development of an effective pharmacotherapy against cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuhar MJ, Ritz MC, Boja JW. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 1991;14:299–302.

    Article  PubMed  CAS  Google Scholar 

  2. Ritz MC, George FR. Cocaine-induced convulsions: pharmacological antagonism at serotonergic, muscarinic and sigma receptors. Psychopharmacol. 1997;129:299–310.

    Article  CAS  Google Scholar 

  3. Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, et al. Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci. 1998;1:132–7.

    Article  PubMed  CAS  Google Scholar 

  4. Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA. 1998;95:7699–704.

    Article  PubMed  CAS  Google Scholar 

  5. Thomsen M, Han DD, Gu HH, Caine SB. Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther. 2010;331:204–11.

    Article  Google Scholar 

  6. Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA. 2001;89:5300–5.

    Article  Google Scholar 

  7. Czoty PW, Martelle JL, Carroll FI, Nader MA. Lower reinforcing strength of the phenyltropane cocaine analogs RTI-336 and RTI-177 compared to cocaine in nonhuman primates. Pharmacol Biochem Behav. 2010;96:274–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhar MJ, McGirr KM, Hunter RG, Lambert PD, Garrett BE, Carroll FI. Studies of selected phenyltropanes at monoamine transporters. Drug Alcohol Depend. 1999;56:9–15.

    Article  PubMed  CAS  Google Scholar 

  9. Cao J, Kulkarni SS, Husbands SM, Bowen WD, Williams W, Kopajtic T, et al. Dual probes for the dopamine transporter and sigma1 receptors: novel piperazinyl alkyl-bis(4′-fluorophenyl)amine analogues as potential cocaine-abuse therapeutic agents. J Med Chem. 2003;46:2589–98.

    Article  PubMed  CAS  Google Scholar 

  10. Han DD, Gu HH. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006;6:6.

    Article  PubMed  Google Scholar 

  11. Sharkey J, Glen KA, Wolfe S, Kuhar MJ. Cocaine binding at sigma receptors. Eur J Pharmacol. 1988;149:171–4.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto RR, Hewett KL, Pouw B, Bowen WD, Husbands SM, Cao JJ, et al. Rimcazole analogs attenuate the convulsive effects of cocaine: correlation with binding to sigma receptors rather than dopamine transporters. Neuropharmacology. 2001;41:878–86.

    Article  PubMed  CAS  Google Scholar 

  13. Hashimoto K. Sigma-1 receptors and selective serotonin reuptake inhibitors: clinical implications of their relationship. CNS Agents Med Chem. 2009;9:197–204.

    CAS  Google Scholar 

  14. Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ. Sigma receptors: potential medications development target for anti-cocaine agents. Eur J Pharmacol. 2003;469:1–12.

    Article  PubMed  CAS  Google Scholar 

  15. Nuwayhid SJ, Werling LL. Sigma22) receptors as a target for cocaine action in the rat striatum. Eur J Pharmacol. 2006;535:98–103.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto RR, McCracken KA, Pouw B, Miller J, Bowen WD, Williams W, et al. N-alkyl substituted analogs of the sigma receptor ligand BD1008 and traditional sigma receptor ligands affect cocaine-induced convulsions and lethality in mice. Eur J Pharmacol. 2001;411:261–73.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology. 2002;42:1043–55.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto RR. Targeting sigma receptors: novel medication development for drug abuse and addiction. Expert Rev Clin Pharmacol. 2009;2:351–8.

    Article  CAS  Google Scholar 

  19. Bermack JE, Debonnel G. Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacol. 2001;134:691–9.

    Article  PubMed  CAS  Google Scholar 

  20. Bermack JE, Debonnel G. The role of sigma receptors in depression. J Pharmacol Sci. 2005;97:317–36.

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez-Alvear GM, Werling LL. Regulation of [3H]dopamine release from rat striatal slices by sigma receptor ligands. J Pharmacol Exp Ther. 1994;271:212–9.

    PubMed  CAS  Google Scholar 

  22. Gonzalez-Alvear GM, Werling LL. σ1 Receptors in rat striatum regulate NMDA-stimulated [3H]dopamine release via a presynaptic mechanism. Eur J Pharmacol. 1995;294:713–9.

    Article  PubMed  CAS  Google Scholar 

  23. Reith ME. Cocaine receptors on monoamine transporters and sodium channels. NIDA Res Monogr. 1988;88:23–43.

    PubMed  CAS  Google Scholar 

  24. Narayanan S, Mésangeau C, Shaikh J, Kaushal N, Matsumoto RR, Poupaert JH, McCurdy CR. Design, synthesis and evaluation of the first highly selective sigma-2 receptor ligand. 234th ACS National Meeting; 2007 August 19–23, Boston, MA.

  25. Matsumoto RR, Bowen WD, Tom MA, Vo VN, Truong DD, De Costa BR. Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. Eur J Pharmacol. 1995;280:301–10.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto RR, Shaikh J, Wilson LL, Vedam S, Coop A. Attenuation of methamphetamine-induced effects through the antagonism of sigma receptors: evidence from in vivo and in vitro studies. Eur Neuropsycopharmacol. 2008;18:871–81.

    Article  CAS  Google Scholar 

  27. Ritz MC, George FR. Cocaine-induced seizures and lethality appear to be associated with distinct central nervous system binding sites. J Pharmacol Exp Ther. 1993;264:1333–43.

    PubMed  CAS  Google Scholar 

  28. Dhuna A, Pascual-Leone A, Langendorf F, Anderson DC. Epileptogenic properties of cocaine in humans. Neurotoxicology. 1991;12:621–6.

    PubMed  CAS  Google Scholar 

  29. Gasior M, Ungard JT, Witkin JM. Preclinical evaluation of newly approved and potential antiepileptic drugs against cocaine-induced seizures. J Pharmacol Exp Ther. 1999;290:1148–56.

    PubMed  CAS  Google Scholar 

  30. Vitale S, van de Mheen D. Illicit drug use and injuries: a review of emergency room studies. Drug Alcohol Depend. 2006;82:1–9.

    Article  PubMed  Google Scholar 

  31. Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes. Neuroscience. 1997;76:467–77.

    Article  PubMed  CAS  Google Scholar 

  32. Walker JM, Bowen WD, Patrick SL, Williams WE, Mascarella SW, Bai X, et al. A comparison of (−)-deoxybenzomorphans devoid of opiate activity with their dextrorotatory phenolic counterparts suggests role of σ2 receptors in motor function. Eur J Pharmacol. 1993;231:61–8.

    Article  PubMed  CAS  Google Scholar 

  33. Jacobowitz DM, Kallarakal AT. Flotillin-1 in the substantia nigra of the Parkinson brain and a predominant localization in catecholaminergic nerves in the rat brain. Neurotox Res. 2004;6:245–57.

    Article  PubMed  CAS  Google Scholar 

  34. Trushina E, Du CJ, Parisi J, McMurray CT. Neurological abnormalities in caveolin-1 knock out mice. Behav Brain Res. 2006;172:24–32.

    Article  PubMed  CAS  Google Scholar 

  35. Delfs JM, Schreiber L, Kelley AE. Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci. 1990;10:303–10.

    PubMed  CAS  Google Scholar 

  36. Derbez AE, Mody RM, Werling LL. Sigma2-receptor regulation of dopamine transporter via activation of protein kinase C. J Pharmacol Exp Ther. 2002;301:306–14.

    Article  PubMed  CAS  Google Scholar 

  37. Hall FS, Li X-F, Randall-Thompson J, Sora I, Murphy DL, Lesch K-P, et al. Cocaine-conditioned locomotion in dopamine transporter, norepinephrine transporter and serotonin transporter knockout mice. Neurosci. 2009;162:870–80.

    Article  CAS  Google Scholar 

  38. Filip M, Bubar MJ, Cunningham KA. Contribution of serotonin (5-hydroxytryptamine; 5-HT) 5-HT2 receptor subtypes to the hyperlocomotor effects of cocaine: acute and chronic pharmacological analyses. J Pharmacol Exp Ther. 2004;310:1246–54.

    Article  PubMed  CAS  Google Scholar 

  39. Carroll FI, Howell LL, Kuhar MJ. Pharmacotherapies for treatment of cocaine abuse: preclinical aspects. J Med Chem. 1999;42:2721–36.

    Article  PubMed  CAS  Google Scholar 

  40. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3:465–71.

    Article  PubMed  CAS  Google Scholar 

  41. Reith MEA, Wiener HL, Fischette CT. Sertraline and cocaine-induced locomotion in mice I. Acute studies. Psychopharmacol. 1991;103:297–305.

    Article  CAS  Google Scholar 

  42. Fletcher PJ, Phil D, Grottick AJ, Higgins GA. Differential effects of the 5-HT2A receptor antagonist M100,907 and the 5-HT2C receptor antagonist SB242,084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine induced reinstatement of responding. Neuropsychopharmacol. 2002;27:576–86.

    CAS  Google Scholar 

  43. McMahon LR, Cunningham KA. Antagonism of 5-hydroxytryptamine2A receptors attenuates the behavioral effects of cocaine in rats. J Pharmacol Exp Ther. 2001;297:357–63.

    PubMed  CAS  Google Scholar 

  44. Lapa GB, Byrd GD, Lapa AA, Budygin EA, Childers SR, Jones SR, et al. The synthesis and biological evaluation of dopamine transporter inhibiting activity of substituted diphenylmethoxypiperidines. Bioorg Med Chem Lett. 2005;15:4915–18.

    Article  PubMed  CAS  Google Scholar 

  45. Licata SC, Schmidt HD, Pierce RC. Suppressing calcium/calmodulin-dependent protein kinase II activity in the ventral tegmental area enhances the acute behavioural response to cocaine but attenuates the initiation of cocaine-induced behavioural sensitization in rats. Eur J Neurosci. 2004;19:405–14.

    Article  PubMed  Google Scholar 

  46. Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell. 1997;90:991–1001.

    Article  PubMed  CAS  Google Scholar 

  47. White FJ, Kalivas PW. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 1998;51:141–53.

    Article  PubMed  CAS  Google Scholar 

  48. Ujike H, Kuroda S, Otsuki S. Sigma receptor antagonists block the development of sensitization to cocaine. Eur J Pharmacol. 1996;296:123–8.

    Article  PubMed  CAS  Google Scholar 

  49. Witkin JM, Terry P, Menkel M, Hickey P, Pontecorvo M, Ferkany J, et al. Effects of the selective sigma receptor ligand, 6-[6-(4-hydroxypiperidinyl)hexyloxy]-3-methylflavone (NPC 16377), on behavioral and toxic effects of cocaine. J Pharmacol Exp Ther. 1993;266:473–82.

    PubMed  CAS  Google Scholar 

  50. Ago Y, Nakamura S, Baba A, Matsuda T. Neuropsychotoxicity of abused drugs: effects of serotonin receptor ligands on methamphetamine- and cocaine-induced behavioral sensitization in mice. J Pharmacol Sci. 2008;106:15–21.

    Article  PubMed  CAS  Google Scholar 

  51. Liu Y, Matsumoto RR. Alterations in fos-related antigen-2 and σ1 receptor gene and protein expression are associated with the development of cocaine-induced behavioral sensitization: time course and regional distribution studies. J Pharmacol Exp Ther. 2008;327:187–95.

    Article  PubMed  CAS  Google Scholar 

  52. Ron D, Jurd R. The “ups and downs” of signaling cascades in addiction. Sci STKE. 2005;309:re14.

    Article  Google Scholar 

  53. Xu YT, Kaushal N, Shaikh J, Wilson LL, Mesangeau C, McCurdy CR, et al. A novel substituted piperazine, 3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione (CM156), attenuates the stimulant and toxic effects of cocaine in mice. J Pharmacol Exp Ther. 2010;333:491–500.

    Article  PubMed  CAS  Google Scholar 

  54. Kalivas PW, Stewart J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev. 1991;16:223–44.

    Article  PubMed  CAS  Google Scholar 

  55. Crawford KW, Coop A, Bowen WD. σ2 Receptors regulate changes in sphingolipid levels in breast tumor cells. Eur J Pharmacol. 2002;443:207–9.

    Article  PubMed  CAS  Google Scholar 

  56. Riddle EL, Rau KS, Topham MK, Hanson GR, Fleckenstein AE. Ceramide-induced alterations in dopamine transporter function. Eur J Pharmacol. 2003;458:31–6.

    Article  PubMed  CAS  Google Scholar 

  57. Crawford KW, Bowen WD. Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines. Cancer Res. 2002;62:313–22.

    PubMed  CAS  Google Scholar 

  58. Won JS, Choi MR, Suh HW. Stimulation of astrocyte-enriched culture with C2 ceramide increases proenkephalin mRNA: involvement of cAMP-response element binding protein and mitogen activated protein kinases. Brain Res. 2001;903:207–15.

    Article  PubMed  CAS  Google Scholar 

  59. Hyman SE. Addiction to cocaine and amphetamine. Neuron. 1996;16:901–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the technical expertise of Jamaluddin Shaikh, Michael Seminerio, and Yantong Xu for conducting some of the radioligand binding assays. We also appreciate the technical assistance of Caroline Croom, Bahbak Shariat-Madar, and Brittany Spitznogle during some of the convulsion and locomotor studies.

This study was supported by grants from the National Institute on Drug Abuse (DA011979, DA013978, DA023205). Nidhi Kaushal received a Natural Products Neuroscience Fellowship through a COBRE grant from the National Center for Research Resources (P20 RR021929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rae R. Matsumoto.

Additional information

Reprint requests should be made to: Rae R. Matsumoto, Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506; email: rmatsumoto@hsc.wvu.edu.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Table I

Binding affinities of SN79 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, N., Robson, M.J., Vinnakota, H. et al. Synthesis and Pharmacological Evaluation of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a Cocaine Antagonist, in Rodents. AAPS J 13, 336–346 (2011). https://doi.org/10.1208/s12248-011-9274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-011-9274-9

Key words

Navigation