Skip to main content
Log in

Cannabinoid receptors and endocannabinoids: Evidence for new players

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

It is now well established that the psychoactive effects ofCannabis sativa are primarily mediated through neuronal CB1 receptors, while its therapeutic immune properties are primarily mediated through CB2 receptors. Two endocannabinoids, arachidonoylethanolamide and 2-arachidonoylglycerol, have been identified, their action on CB1 and CB2 thoroughly characterized, and their production and inactivation elucidated. However, many significant exceptions to these rules exist. Here we review the evidence suggesting that cannabinoids can modulate synaptic transmission, the cardiovascular system, and the immune system through receptors distinct from CB1 and CB2, and that an additional “independent” endocannabinoid signaling system that involves palmitoylethanolamide may exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Watson SJ, Benson JA, Joy JE. Marijuana and medicine: assessing the science base.Arch Gen Psychiatry. 2000;57:547–552.

    Article  PubMed  CAS  Google Scholar 

  2. Iversen LL.The Science of Marijuana. Oxford, UK: Oxford University Press; 2000.

    Google Scholar 

  3. Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish.J Am Chem Soc. 1964;86:1646–1647.

    Article  CAS  Google Scholar 

  4. Hall W, Solowij N. Adverse effects of cannabis.Lancet. 1998;352:1611–1616.

    Article  PubMed  CAS  Google Scholar 

  5. Malfait AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis.Proc Natl Acad Sci USA. 2000;97:9561–9566.

    Article  PubMed  CAS  Google Scholar 

  6. Herring AC, Kaminski NE. Cannabinol-mediated inhibition of nuclear factor-κB, cAMP response element-binding protein, and interleukin-2 secretion by activated thymocytes.J Pharmacol Exp Ther. 1999;291:1156–1163.

    PubMed  CAS  Google Scholar 

  7. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.Nature. 1990;346:561–564.

    Article  PubMed  CAS  Google Scholar 

  8. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids.Nature. 1993;365:61–65.

    Article  PubMed  CAS  Google Scholar 

  9. Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling.Physiol Rev. 2003;83:1017–1066.

    PubMed  CAS  Google Scholar 

  10. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity.Science. 2003;302:84–88.

    Article  PubMed  CAS  Google Scholar 

  11. Rodríguez JJ, Mackie K, Pickel VM. Ultrastructural localization of the CB1 cannabinoid receptor in μ-opioid receptor patches of the rat caudate putamen nucleus.J Neurosci. 2001;21:823–833.

    PubMed  Google Scholar 

  12. Molina-Holgado E, Vela JM, Arévalo-Martin A, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptor and phosphatidyllinositol-3 kinase/Akt signaling.J Neurosci. 2002;22:9742–9753.

    PubMed  CAS  Google Scholar 

  13. Aguado T, Monory K, Palazuelos J, et al. The endocannabinoid system drives neural progenitor proliferation.FASEB J. 2005;19:1704–1706.

    PubMed  CAS  Google Scholar 

  14. Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA. Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing the cannabinoid receptor clones.Mol Pharmacol. 1992;42:838–845.

    PubMed  CAS  Google Scholar 

  15. Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor.J Neurosci. 1997;17:5327–5333.

    PubMed  CAS  Google Scholar 

  16. Huestis MA, Gorelick DA, Heishman SJ, et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716.Arch Gen Psychiatry. 2001;58:322–328.

    Article  PubMed  CAS  Google Scholar 

  17. Straiker A, Mackie K. Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones.J Physiol. 2005;569:501–517.

    Article  PubMed  CAS  Google Scholar 

  18. Kelley BG, Thayer SA. Delta 9-tetrahydrocannabinol antagonizes endocannabinoid modulation of synaptic transmission between hippocampal neurons in culture.Neuropharmacology. 2004;46:709–715.

    Article  PubMed  CAS  Google Scholar 

  19. Jordan JD, He JC, Eungdamrong NJ, et al. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1 GAPII.J Biol Chem. 2005;280:11413–11421.

    Article  PubMed  CAS  Google Scholar 

  20. Kim D, Thayer SA. Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture.J Neurosci. 2001;21:RC146.

    PubMed  CAS  Google Scholar 

  21. Jin K, Xie L, Kim SH, et al. Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice.Mol Pharmacol. 2004;66:204–208.

    Article  PubMed  CAS  Google Scholar 

  22. Galiègue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations.Eur J Biochem. 1995;232:54–61.

    Article  PubMed  Google Scholar 

  23. Patrini G, Sacerdote P, Fuzio D, Manfredi B, Parolaro D. Regulation of immune functions in rat splenocytes after acute and chronic in vivo treatment with CP-55,940, a synthetic cannabinoid compound.J Neuroimmunol. 1997;80:143–148.

    Article  PubMed  CAS  Google Scholar 

  24. Richardson JD, Kilo S, Hargreaves KM. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors.Pain. 1998;75:111–119.

    Article  PubMed  CAS  Google Scholar 

  25. Massi P, Fuzio D, Viganò D, Sacerdote P, Parolaro D. Relative involvement of cannabinoid CB1 and CB2 receptors in theΔ 9-tetrahydrocannabinol-induced inhibition of natural killer activity.Eur J Pharmacol. 2000;387:343–347.

    Article  PubMed  CAS  Google Scholar 

  26. Buckley NE, McCoy KL, Mezey E, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor.Eur J Pharmacol. 2000;396:141–149.

    Article  PubMed  CAS  Google Scholar 

  27. Felder CC, Joyce KE, Briley EM, et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors.Mol Pharmacol. 1995;48:443–450.

    PubMed  CAS  Google Scholar 

  28. Hanus L, Breuer A, Tchilibon S, et al. HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor.Proc Natl Acad Sci USA. 1999;96:14228–14233.

    Article  PubMed  CAS  Google Scholar 

  29. Conti S, Costa B, Colleoni M, Parolaro D, Giagnoni G. Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat.Br J Pharmacol. 2002;135:181–187.

    Article  PubMed  CAS  Google Scholar 

  30. McCoy KL, Gainey D, Cabral GA.Δ 9-tetrahydrocannabinol modulates antigen processing by macrophages.J Pharmacol Exp Ther. 1995;273:1216–1223.

    PubMed  CAS  Google Scholar 

  31. McCoy KL, Matveyeva M, Carlisle SJ, Cabral GA. Cannabinoid inhibition of the processing of intact lysozyme by macrophages: evidence for CB2 receptor participation.J Pharmacol Exp Ther. 1999;289:1620–1625.

    PubMed  CAS  Google Scholar 

  32. McKallip RJ, Lombard C, Martin BR, Nagarkatti M, Nagarkatti PS. Delta(9)-tetrahydrocannabinol-induced apoptosis in the thymus and spleen as a mechanism of immunosuppression in vitro and in vivo.J Pharmacol Exp Ther. 2002;302:451–465.

    Article  PubMed  CAS  Google Scholar 

  33. Derocq J-M, Ségui M, Marchand J, Le Fur G, Casellas P. Cannabinoids enhance human B-cell growth at low nanomolar concentrations.FEBS Lett. 1995;369:177–182.

    Article  PubMed  CAS  Google Scholar 

  34. Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE. Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system.Toxicol Appl Pharmacol. 1997;142:278–287.

    Article  PubMed  CAS  Google Scholar 

  35. Sugiura T, Kondo S, Kishimoto S, et al. Evidence that 2-arachidonylglycerol but not N-palmitpylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor: comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells.J Biol Chem. 2000;275:605–612.

    Article  PubMed  CAS  Google Scholar 

  36. Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation.Int Immunopharmacol. 2002;2:69–82.

    Article  PubMed  CAS  Google Scholar 

  37. Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors.Science. 2005;310:329–332.

    Article  PubMed  CAS  Google Scholar 

  38. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli.J Neurochem. 2005;95:437–445.

    Article  PubMed  CAS  Google Scholar 

  39. Benito C, Núnez E, Tolón RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaques-associated glia in Alzheimer's disease brains.J Neurosci. 2003;23:11136–11141.

    PubMed  CAS  Google Scholar 

  40. Walter L, Franklin A, Witting A, et al. Non-psychotropic cannabinoid receptors regulate microglial cell migration.J Neurosci. 2003;23:1398–1405.

    PubMed  CAS  Google Scholar 

  41. Kishimoto S, Gokoh M, Oka S, et al. 2-Arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism.J Biol Chem. 2003;278:24469–24475.

    Article  PubMed  CAS  Google Scholar 

  42. Jordà MA, Verbakel SE, Valk PJ, et al. Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol.Blood. 2002;99:2786–2793.

    Article  PubMed  Google Scholar 

  43. Gokoh M, Kishimoto S, Oka S, et al. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells.Biochem J. 2005;386:583–589.

    Article  PubMed  CAS  Google Scholar 

  44. Waksman Y, Olson JM, Carlisle SJ, Cabral GA. The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells.J Pharmacol Exp Ther. 1999;288:1357–1366.

    PubMed  CAS  Google Scholar 

  45. Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor.Br J Pharmacol. 2003;139:775–786.

    Article  PubMed  CAS  Google Scholar 

  46. Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNFα in rat microglial cells stimulated with lypopolysaccharide.Glia. 2003;41:161–168.

    Article  PubMed  Google Scholar 

  47. Carrier EJ, Kearn CS, Barkmeier AJ, et al. Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism.Mol Pharmacol. 2004;65:999–1007.

    Article  PubMed  CAS  Google Scholar 

  48. Derocq J-M, Jbilo O, Bouaboula M, Ségui M, Clère C, Casellas P. Genomic and functional changes induced by the activation of the peripheral cannabinoid receptor CB2 in the promyelocytic cells HL-60: possible involvement of the CB2 receptor in cell differentiation.J Biol Chem. 2000;275:15621–15628.

    Article  PubMed  CAS  Google Scholar 

  49. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science. 1992;258:1946–1949.

    Article  PubMed  CAS  Google Scholar 

  50. Di Marzo V, Fontana A, Cadas H, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons.Nature. 1994;372:686–691.

    Article  PubMed  Google Scholar 

  51. Giuffrida A, Parsons LH, Kerr TM, Rodríguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.Nat Neurosci. 1999;2:358–363.

    Article  PubMed  CAS  Google Scholar 

  52. Walker JM, Huang SM, Strangman NM, Tsou K, Sañudo-Peña MC. Pain modulation by release of the endogenous cannabinoid anandamide.Proc Natl Acad Sci USA. 1999;96:12198–12203.

    Article  PubMed  CAS  Google Scholar 

  53. Di Marzo V, De Petrocellis L, Sugiura T, Waku K. Potential biosynthetic connections between the 2 cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells.Biochem Biophys Res Commun. 1996;227:281–288.

    Article  PubMed  Google Scholar 

  54. Cadas H, Schinelli S, Piomelli D. Membrane localization of N-acylphosphatidylethanolamine in central neurons: studies with exogenous phospholipases.J Lipid Mediat Cell Signal. 1996;14:63–70.

    Article  PubMed  CAS  Google Scholar 

  55. Sugiura T, Kondo S, Sukagawa A, et al. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes: comparison with synthesis from free arachidonic acid and ehtanolamineEur J Biochem. 1996;240:53–62.

    Article  PubMed  CAS  Google Scholar 

  56. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners.J Biol Chem. 2004;279:5298–5305.

    Article  PubMed  CAS  Google Scholar 

  57. Piomelli D. The challenge of brain lipidomics.Prostaglandins Other Lipid Mediat. 2005;77:23–34.

    Article  PubMed  CAS  Google Scholar 

  58. Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids.Nature. 1998;394:277–281.

    Article  PubMed  CAS  Google Scholar 

  59. Felder CC, Nielsen A, Briley EM, et al. Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat.FEBS Lett. 1996;393:231–235.

    Article  PubMed  CAS  Google Scholar 

  60. Schmid PC, Kuwae T, Krebsbach RJ, Schmid HHO. Anandamide and other N-acylethanolamines in mouse peritoneal macrophages.Chem Phys Lipids. 1997;87:103–110.

    Article  PubMed  CAS  Google Scholar 

  61. Schmid PC, Paria BC, Krebsbach RJ, Schmid HHO, Dey SK. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation.Proc Natl Acad Sci USA. 1997;94:4188–4192.

    Article  PubMed  CAS  Google Scholar 

  62. Calignano A, Kátona I, Désarnaud F, et al. Bidirectional control of airway responsivenes by endogenous cannabinoids.Nature. 2000;408:96–101.

    Article  PubMed  CAS  Google Scholar 

  63. Mackie K, Devane WA, Hille B. Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells.Mol Pharmacol. 1993;44:498–503.

    PubMed  CAS  Google Scholar 

  64. Fride E, Mechoulam R. Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent.Eur J Pharmacol. 1993;231:313–314.

    Article  PubMed  CAS  Google Scholar 

  65. Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase.Proc Natl Acad Sci USA. 2001;98:9371–9376.

    Article  PubMed  CAS  Google Scholar 

  66. Griffin G, Tao Q, Abood ME. Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor.J Pharmacol Exp Ther. 2000;292:886–894.

    PubMed  CAS  Google Scholar 

  67. Gonsiorek W, Lunn C, Fan X, Narula S, Lundell D, Hipkin RW. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide.Mol Pharmacol. 2000;57:1045–1050.

    PubMed  CAS  Google Scholar 

  68. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis.Nat Med. 2003;9:76–81.

    Article  PubMed  CAS  Google Scholar 

  69. Hampson AJ, Hill WAG, Zan-Phillips M, et al. Anandamide hydroxylation by brain lipoxygenase: metabolite structures and potencies at the cannabinoid receptor.Biochim Biophys Acta. 1995;1259:173–179.

    PubMed  Google Scholar 

  70. Yu M, Ives D, Ramesha CS. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2.J Biol Chem. 1997;272:21181–21186.

    Article  PubMed  CAS  Google Scholar 

  71. Weber A, Ni J, Ling KH, et al. Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry.J Lipid Res. 2004;45:757–763.

    Article  PubMed  CAS  Google Scholar 

  72. Kim J, Alger BE. Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus.Nat Neurosci. 2004;7:697–698.

    Article  PubMed  CAS  Google Scholar 

  73. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.Biochem Pharmacol. 1995;50:83–90.

    Article  PubMed  CAS  Google Scholar 

  74. Sugiura T, Kondo S, Sukagawa A, et al. 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain.Biochem Biophys Res Commun. 1995;215:89–97.

    Article  PubMed  CAS  Google Scholar 

  75. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation.Nature. 1997;388:773–778.

    Article  PubMed  CAS  Google Scholar 

  76. Prescott SM, Majerus PW. Characterization of 1,2-diacylglycerol hydrolysis in human platelets: demonstration of an arachidonoylmonoacylglycerol intermediate.J Biol Chem. 1983;258:764–769.

    PubMed  CAS  Google Scholar 

  77. Farooqui AA, Taylor AW, Horrocks LA. Separation of bovine brain mono- and diacylglycerol lipases by heparin sepharose affinity chromatography.Biochem Biophys Res Commun. 1984;122:1241–1246.

    Article  PubMed  CAS  Google Scholar 

  78. Maejima T, Oka S, Hashimotodani Y, et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum.J Neurosci. 2005;25:6826–6835.

    Article  PubMed  CAS  Google Scholar 

  79. Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, et al. Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal.Neuron. 2005;45:257–268.

    Article  PubMed  CAS  Google Scholar 

  80. Bisogno T, Howell F, Williams G, et al. Cloning of the first snl-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain.J Cell Biol. 2003;163:463–468.

    Article  PubMed  CAS  Google Scholar 

  81. Bisogno T, Sepe N, Melck D, Maurelli S, De Petrocellis L, Di Marzo V. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells.Biochem J. 1997;322:671–677.

    PubMed  CAS  Google Scholar 

  82. Bisogno T, Maccarrone M, De Petrocellis L, et al. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors.Eur J Biochem. 2001;268:1982–1989.

    Article  PubMed  CAS  Google Scholar 

  83. Beltramo M, Piomelli D. Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol.Neuroreport. 2000;11:1231–1235.

    Article  PubMed  CAS  Google Scholar 

  84. Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation.Proc Natl Acad Sci USA. 2002;99:10819–10824.

    Article  PubMed  CAS  Google Scholar 

  85. Dinh TP, Kathuria S, Piomelli D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol.Mol Pharmacol. 2004;66:1260–1264.

    Article  PubMed  CAS  Google Scholar 

  86. Kozak KR, Rowlinson SW, Marnett LJ. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2.J Biol Chem. 2000;275:33744–33749.

    Article  PubMed  CAS  Google Scholar 

  87. Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand.FEBS Lett. 1998;422:69–73.

    Article  PubMed  CAS  Google Scholar 

  88. Breivogel CS, Griffin G, Di Marzo V, Martin BR. Evidence for a new G protein-coupled cannabinoid receptor in mouse brain.Mol Pharmacol. 2001;60:155–163.

    PubMed  CAS  Google Scholar 

  89. Di Marzo V, Breivogel CS, Tao Q, et al. Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain.J Neurochem. 2000;75:2434–2444.

    Article  PubMed  Google Scholar 

  90. Hájos N, Ledent C, Freund TF. Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.Neuroscience. 2001;106:1–4.

    Article  PubMed  Google Scholar 

  91. Hájos N, Freund TF. Pharmacological separation of cannabinoid sensitive receptors on hippocampal excitatory and inhibitory fibers.Neuropharmacology. 2002;43:503–510.

    Article  PubMed  Google Scholar 

  92. Hoffman AF, Macgill AM, Smith D, Oz M, Lupica CR. Species and strain differences in the expression of a novel glutamate-modulating cannabinoid receptor in the rodent hippocampus.Eur J Neurosci. 2005;22:2387–2391.

    Article  PubMed  Google Scholar 

  93. Rouach N, Nicoll RA. Endocannabinoids contribute to short-term but not long-term mGlur-induced depression in the hippocampus.Eur J Neurosci. 2003;18:1017–1020.

    Article  PubMed  Google Scholar 

  94. Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL. Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions.Neuropharmacology. 2004;46:115–125.

    Article  PubMed  CAS  Google Scholar 

  95. Houser SJ, Eads M, Embrey JP, Welch SP. Dynorphim B and spinal analgesia: induction of antinociception by the cannabinoids CP55, 940, Delta(9)-THC and anandamide.Brain Res. 2000;857:337–342.

    Article  PubMed  CAS  Google Scholar 

  96. Welch SP, Huffinan JW, Lowe J. Differential blockade of the antinociceptive effects of centrally administered cannabinoids by SR141716A.J Pharmacol Exp Ther. 1998;286:1301–1308.

    PubMed  CAS  Google Scholar 

  97. Begg M, Pacher P, Batkai S, et al. Evidence for novel cannabinoid receptors.Pharmacol Ther. 2005;106:133–145.

    Article  PubMed  CAS  Google Scholar 

  98. Járai Z, Wagner JA, Varga K, et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors.Proc Natl Acad Sci USA 1999;96:14136–14141.

    Article  PubMed  Google Scholar 

  99. Offertáler L, Mo F, Bátkai S, et al. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor.Mol Pharmacol. 2003;63:699–705.

    Article  PubMed  Google Scholar 

  100. Begg M, Mo F-M, Offertáler L, et al. G protein-coupled endothelial receptor for atypical cannabinoid ligands modulates a Ca2+-dependent K+ current.J Biol Chem. 2003;278:46188–46194.

    Article  PubMed  CAS  Google Scholar 

  101. Bouaboula M, Rinaldi M, Carayon P, et al. Cannabinoid-receptor expression in human leukocytes.Eur J Biochem. 1993;214:173–180.

    Article  PubMed  CAS  Google Scholar 

  102. Klein TW, Newton C, Larsen K, et al. The cannabinoid system and immune modulation.J Leukoc Biol. 2003;74:486–496.

    Article  PubMed  CAS  Google Scholar 

  103. Walter L, Stella N. Cannabinoids and neuroinflammation.Br J Pharmacol. 2004;141:775–785.

    Article  PubMed  CAS  Google Scholar 

  104. Lambert DM, Vandevoorde S, Jonsson K-O, Fowler CT. The palmitoylethanolamide family: a new class of anti-inflammatory agents?Curr Med Chem. 2002;9:663–674.

    PubMed  CAS  Google Scholar 

  105. Jaggar SI, Hasnie FS, Sellaturay S, Rice AS. The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain.Pain. 1998;76:189–199.

    Article  PubMed  CAS  Google Scholar 

  106. Cadas H, di Tomaso E, Piomelli D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain.J Neurosci. 1997;17:1226–1242.

    PubMed  CAS  Google Scholar 

  107. Hansen HS, Lauritzen L, Strand AM, Vinggaard AM, Frandsen A, Schousboe A. Characterization of glutamate-induced formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons.J Neurochem. 1997;69:753–761.

    Article  PubMed  CAS  Google Scholar 

  108. Stella N, Piomelli D. Receptor-dependent formation of endogenous cannabinoids in cortical neurons.Eur J Pharmacol. 2001;425:189–196.

    Article  PubMed  CAS  Google Scholar 

  109. Walter L, Franklin A, Witting A, Möller T, Stella N. Astrocytes in culture produce anandamide and other acylethanolamides.J Biol Chem. 2002;277:20869–20876.

    Article  PubMed  CAS  Google Scholar 

  110. Walter L, Stella L. Endothelin-1 increases 2-arachidonyl glycerol (2-AG) production in astrocytes.Glia. 2003;44:85–90.

    Article  PubMed  Google Scholar 

  111. Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cells motility.J Neurosci. 2003;23:7767–7775.

    PubMed  CAS  Google Scholar 

  112. Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance.J Biol Chem. 2001;276:35552–35557.

    Article  PubMed  CAS  Google Scholar 

  113. Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase.J Biol Chem 2005;280:11082–11092.

    Article  PubMed  CAS  Google Scholar 

  114. Ueda N, Tsuboi K, Lambert DM. A second N-acylethanolamine hydrolase in mammalian tissues.Neuropharmacology. 2005;48:1079–1085.

    Article  PubMed  CAS  Google Scholar 

  115. Sun YX, Tsuboi K, Zhao LY, Okamoto Y, Lambert DM, Ueda N. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.Biochim Biophys Acta. 2005;1736:211–220.

    PubMed  CAS  Google Scholar 

  116. Gulyas AI, Cravatt BF, Bracey MH, et al. Segregation of 2 endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala.Eur J Neurosci. 2004;20:441–458.

    Article  PubMed  CAS  Google Scholar 

  117. Sawzdargo M, Nguyen T, Lee DK, et al. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain.Brain Res Mol Brain Res. 1999;64:193–198.

    Article  PubMed  CAS  Google Scholar 

  118. Brown, A, Wise A, inventors. GlaxoSmithKline, assignee. Identification of modulators of GPR55 activity. US patent 0 113 814. June 19, 2003.

  119. Drmota T, Greasley P, Groblewski T, inventors. AstraZeneca, assignee. Screening assays for cannabinoid-ligand-type modulators of GPR55. WIPO patent 074 844. September 2, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nephi Stella.

Additional information

Published: April 28, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackie, K., Stella, N. Cannabinoid receptors and endocannabinoids: Evidence for new players. AAPS J 8, 34 (2006). https://doi.org/10.1007/BF02854900

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854900

Keywords

Navigation