Skip to main content

Advertisement

Log in

Current industrial practices of assessing permeability and P-glycoprotein interaction

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Combination of the in vitro models that are high throughput but less predictive and the in vivo models that are low throughput but more predictive is used effectively to evaluate the intestinal permeability and transport characteristics of a large number of drug candidates during lead selection and lead optimization processes. Parallel artificial membrane permeability assay and Caco-2 cells are the most frequently used in vitro models to assess intestinal permeability. The popularity of these models stems from their potential for high throughput, cost effectiveness, and adequate predictability of absorption potential in humans. However, several caveats associated with these models (eg, poor predictability for transporter-mediated and paracellularly absorbed compounds, significant nonspecific binding to cells/devices leading to poor recovery, variability associated with experimental factors) need to be considered carefully to realize their full potential. P-glycoprotein, among other pharmaceutically relevant transporters, has been well demonstrated to be the major determinant of drug disposition. The review article presents an objective analysis of the permeability and transporter models currently being used in the pharmaceutical industry and could help guide the discovery scientists in implementing these models in an optimal fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Food and Drug Administration.Challenges and Opportunity on the Critical Path to New Medical Products.FDA Report. Rockville, MD: Food and Drug Administration; 2004.

    Google Scholar 

  2. Kola I, Landis J. Can pharmaceutical industry reduce attrition rates?Nat Rev Drug Discov. 2004;3:711–715.

    Article  CAS  PubMed  Google Scholar 

  3. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption.J Pharmacol Toxicol Methods. 2000;44:301–312.

    Article  CAS  PubMed  Google Scholar 

  4. Hidalgo I. Assessing the absorption of new pharmaceuticals.Curr Top Med Chem. 2001;1:385–401.

    Article  CAS  PubMed  Google Scholar 

  5. Hillgren K, Kato A, Borchardt R. In vitro systems for studying intestinal drug absorption.Med Res Rev. 1995;15:83–109.

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  7. Avdeef A. Physicochemical profiling (solubility, permeability and charge state).Curr Top Med Chem. 2001;1:277–351.

    Article  CAS  PubMed  Google Scholar 

  8. Lin J. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein.Adv Drug Deliv Rev. 2003;55:53–81.

    Article  CAS  PubMed  Google Scholar 

  9. Polli J, Jerrett J, Studenberg J, et al. Role of P-gp on CNS disposition of amprenavir, an HIV protease inhibitor.Pharm Res. 1999;16:1206–1212.

    Article  CAS  PubMed  Google Scholar 

  10. Kim R, Wendel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-gp.Pharm Res. 1999;16:408–414.

    Article  CAS  PubMed  Google Scholar 

  11. Lin J, Yamazaki M. Role of P-glycoprotein in pharmacokinetics.Clin Pharmacokinet. 2003;42:59–98.

    Article  CAS  PubMed  Google Scholar 

  12. Simpson K, Jarvis B. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria.Drugs. 2000;59:301–321.

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe T, Miyauchi S, Sawada Y, et al Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver: possible roles of P-gp in biliary excretion of vincristine.J Hepatol. 1992;16:77–88.

    Article  CAS  PubMed  Google Scholar 

  14. Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-gp.Pharm Res. 2001;18:1660–1668.

    Article  CAS  PubMed  Google Scholar 

  15. Perloff M, Stromer E, von Moltke L, Greenblatt D. Rapid assessment of P-gp inhibition and induction in vitro.Pharm Res. 2003;20:1177–1183.

    Article  CAS  PubMed  Google Scholar 

  16. Polli J, Wring S, Humphreys J, et al. Rational use of in vitro P-gp assays in drug discovery.J Pharmacol Exp Ther. 2001;299:620–628.

    CAS  PubMed  Google Scholar 

  17. Yamazaki M, Neway W, Ohe T, et al. In vitro substrate identification studies for P-gp mediated transport: species difference and predictability of in vivo results.J Pharmacol Exp Ther. 2001;296:723–735.

    CAS  PubMed  Google Scholar 

  18. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes.J Med Chem. 1998;41:1007–1010.

    Article  CAS  PubMed  Google Scholar 

  19. Kerns E. High throughput physicochemical profiling for drug discovery.J Pharm Sci. 2001;90:1838–1858.

    Article  CAS  PubMed  Google Scholar 

  20. Ruell JA, Tsinman KL, Avdeef A. PAMPA—a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pKa(flux)—optimized design (pOD-PAMPA).Eur J Pharm Sci. 2003;20:393–402.

    Article  CAS  PubMed  Google Scholar 

  21. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier.Eur J Med Chem. 2003;38:223–232.

    Article  CAS  PubMed  Google Scholar 

  22. Artursson P. Cell cultures as models for drug absorption across the intestinal mucosa.Crit Rev Ther Drug Carrier Syst. 1991;8:305–330.

    CAS  PubMed  Google Scholar 

  23. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelia (Caco-2) cells.Biochem Biophys Res Commun. 1991;175:880–890.

    Article  CAS  PubMed  Google Scholar 

  24. Rubas W, Cromwell M, Shahrokh Z, et al. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue.J Pharm Sci. 1996;85:165–169.

    Article  CAS  PubMed  Google Scholar 

  25. Aungst B, Nguyen N, Bulgarelli J, Oates-Lenz K. The influence of donor and reservoir additives on Caco-2 perm eability and secretory transport of HIV protease inhibitors and other lipophilic compounds.Pharm Res. 2000;17:1175–1180.

    Article  CAS  PubMed  Google Scholar 

  26. Balimane PV, Chong S. A combined cell based approach to identify P-glycoprotein substrates and inhibitors in a single assay.Int J Pharm. 2005;301:80–88.

    Article  CAS  PubMed  Google Scholar 

  27. Braun A, Hammerle S, Suda K, Rothen-Rutishauser B, Gunthert M, Wunderli-Allenspach H. Cell cultures as tools in biopharmacy.Eur J Pharm Sci. 2000;11:S51-S60.

    Article  CAS  PubMed  Google Scholar 

  28. Horie K, Tang F, Borchardt R. Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance efflux transporter.Pharm Res. 2003;20:161–168.

    Article  CAS  PubMed  Google Scholar 

  29. Ungell AL. Caco-2 replace or refine?Drug Discov Today Technol. 2004;1:423–430.

    Article  CAS  PubMed  Google Scholar 

  30. Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique.Drug Discov Today. 2005;10:335–343.

    Article  CAS  PubMed  Google Scholar 

  31. Chong S, Dando S, Soucek K, Morrison R. In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system.Pharm Res. 1996;13:120–123.

    Article  CAS  PubMed  Google Scholar 

  32. Ano R, Kimura Y, Shima M, Matsuno R, Ueno T, Akamatsu M. Relationship between structure and high-throughput screening permeability of papetide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability.Bioorg Med Chem. 2004;12:257–264.

    Article  CAS  PubMed  Google Scholar 

  33. Kerns E, Di L, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery.J Pharm Sci. 2004;93:1440–1453.

    Article  CAS  PubMed  Google Scholar 

  34. Dressman J, Berardi R, Dermentzoglou L, et al. Upper gastrointestinal (GI) pH in young, healthy men and women.Pharm Res. 1990;7:756–761.

    Article  CAS  PubMed  Google Scholar 

  35. Russell T, Berardi R, Barnett J, et al. Upper gastrointestinal pH in 79 healthy, elderly, North American men and women.Pharm Res. 1993;10:187–196.

    Article  CAS  PubMed  Google Scholar 

  36. Anderle P, Huang Y, Sadee W. Intestinal membrane transport of drugs and nutrients: genomic membrane transporters using expression microarray.Eur J Pharm Sci. 2004;21:17–24.

    Article  CAS  PubMed  Google Scholar 

  37. Behrens I, Kamm W, Dantzig A, Kissel T. Variation of peptide transporter (PepT1 and HPT1) expression in Caco-2 cells as a function of cell origin.J Pharm Sci. 2004;93:1743–1754.

    Article  CAS  PubMed  Google Scholar 

  38. Sun D, Lennernas H, Welage L, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12 000 gene sequence tags and correlation with permeability of 26 drugs.Pharm Res. 2002;19:1400–1416.

    Article  CAS  PubMed  Google Scholar 

  39. Krishna G, Chen K, Lin C, Nomeir A. Permeability of lipophilic compounds in drug discovery using in vitro human absorption model, Caco-2.Int J Pharm. 2001;222:77–89.

    Article  CAS  PubMed  Google Scholar 

  40. Saha P, Kou J. Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers.Eur J Pharm Biopharm. 2002;54:319–324.

    Article  CAS  PubMed  Google Scholar 

  41. Dimitrijevic D, Shaw A, Florence A. Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells.J Pharm Pharmacol. 2000;52:157–162.

    Article  CAS  PubMed  Google Scholar 

  42. Rege B, Yu L, Hussain A, Polli J. Effect of common excipients on Caco-2 transport of low-permeability drugs.J Pharm Sci. 2001;90:1776–1786.

    Article  CAS  PubMed  Google Scholar 

  43. Rege B, Kao J, Polli J. Effect of non-ionic surfactants on membrane transport in Caco-2 cell monolayers.Eur J Pharm Sci. 2002;16:237–246.

    Article  CAS  PubMed  Google Scholar 

  44. Ingels F, Augustijns P. Biological, pharmaceutical, and analytical considerations with respect to the transport media used in the absorption screening system, Caco-2.J Pharm Sci. 2003;92:1545–1558.

    Article  CAS  PubMed  Google Scholar 

  45. Walter E, Kissel T. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport.Eur J Pharm Sci. 1995;3:215–230.

    Article  CAS  Google Scholar 

  46. Maliepaard M, van Gastelen M, Tohgo A, et al. Circum vention of BCRP-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918.Clin Cancer Res. 2001;7:935–941.

    CAS  PubMed  Google Scholar 

  47. Woehlecke H, Pohl A, Alder-Berens N, Lage H, Herrmann A. Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2).Biochem J. 2003;376:489–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen Z, Kawabe T, Ono M, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter.Mol Pharmacol. 1999;56:1219–1228.

    CAS  PubMed  Google Scholar 

  49. Dantzig A, Shepard R, Law K, et al. Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities.J Pharmacol Exp Ther. 1999;290:854–862.

    CAS  PubMed  Google Scholar 

  50. Volk E, Schneider E. Wild type BCRP is a methotrexate polyglutamate transporter.Cancer Res. 2003;63:5538–5543.

    CAS  PubMed  Google Scholar 

  51. Zhang S, Yang X, Morris M. Flavonoids are inhibitors of BCRP-mediated transport.Mol Pharmacol. 2004;65:1208–1216.

    Article  CAS  PubMed  Google Scholar 

  52. Lee K, Ng C, Brouwer KL, Thakker DR. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers.J Pharmacol Exp Ther. 2002;303:574–580.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen V. Balimane.

Additional information

Published: January 13, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balimane, P.V., Han, YH. & Chong, S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J 8, 1 (2006). https://doi.org/10.1208/aapsj080101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080101

Keywords

Navigation