Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

RNAi and HTS: exploring cancer by systematic loss-of-function

Abstract

Cancer develops through the successive accumulation and selection of genetic and epigenetic alterations, enabling cells to survive, replicate and evade homeostatic control mechanisms such as apoptosis and antiproliferative signals. This transformation process, however, may create vulnerabilities since the accumulation of mutations can expose synthetic lethal gene interactions and oncogene-driven cellular reprogramming (‘addiction’), giving rise to new therapeutic avenues. With the completion of the human genome project, it is anticipated that the identification and characterization of genetic networks that regulate cell growth, differentiation, apoptosis and transformation will be fundamental to decoding the complexity of these processes, and ultimately, cancer itself. Genomic methodologies, such as large-scale mRNA profiling using microarrays, have already begun to reveal the molecular basis of cancer heterogeneity and the clinical behavior of tumors. The combination of traditional cell culture techniques with high-throughput screening approaches has given rise to new cellular-genomics methodologies that enable the simultaneous interrogation of thousands of genes in live cells, facilitating true functional profiling of biological processes. Among these, RNA interference (RNAi) has the potential to enable rapid genome-wide loss-of-function (LOF) screens in mammalian systems, which until recently has been the sole domain of lower organisms. Here, we present a broad overview of this maturing technology and explore how, within current technical constraints, large-scale LOF use of RNAi can be exploited to uncover the molecular basis of cancer – from the genetics of synthetic lethality and oncogene-dependent cellular addiction to the acquisition of cancer-associated cellular phenotypes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ashkenazi A and Dixit VM . (1999). Curr. Opin. Cell. Biol., 11, 255–260.

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J and Ruvkun G . (2003). Nature, 421, 268–272.

  • Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL and Cooke MP . (2003). Mol. Cell, 12, 627–637.

  • Baghdoyan S, Roupioz Y, Pitaval A, Castel D, Khomyakova E, Papine A, Soussaline F and Gidrol X . (2004). Nucleic Acids Res., 32, e77.

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL and Bernards R . (2004). Nature, 428, 431–437.

  • Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Consortium HF, Paro R and Perrimon N . (2004). Science, 303, 832–835.

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL and Iggo R . (2003). Nat. Genet., 34, 263–264.

  • Brummelkamp TR, Nijman SM, Dirac AM and Bernards R . (2003). Nature, 424, 797–801.

  • Carpenter AE and Sabatini DM . (2004). Nat. Rev. Genet., 5, 11–22.

  • Deveraux QL, Aza-Blanc P, Wagner KW, Bauerschlag D, Cooke MP and Hampton GM . (2003). Semin. Cancer Biol., 13, 293–300.

  • Dolma S, Lessnick SL, Hahn WC and Stockwell BR . (2003). Cancer Cell., 3, 285–296.

  • Dorsett Y and Tuschl T . (2004). Nat. Rev. Drug Discov., 3, 318–329.

  • Druker BJ . (2002). Trends Mol. Med., 8, S14–S18.

  • Echalier G and Ohanessian A . (1970). In vitro, 6, 162–172.

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T . (2001). Nature, 411, 494–498.

  • Felsher DW and Bishop JM . (1999). Mol. Cell, 4, 199–207.

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC . (1998). Nature, 391, 806–811.

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M and Ahringer J . (2000). Nature, 408, 325–330.

  • Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P and Hyman AA . (2000). Nature, 408, 331–336.

  • Hahn WC and Weinberg RA . (2002). N. Engl. J. Med., 347, 1593–1603.

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW and Friend SH . (1997). Science, 278, 1064–1068.

  • He L and Hannon GJ . (2004). Nat. Rev. Genet., 5, 522–531.

  • Hopkins AL and Groom CR . (2002). Nat. Rev. Drug Discov., 1, 727–730.

  • Hsieh AC, Bo R, Manola J, Vazquez F, Bare O, Khvorova A, Scaringe S and Sellers WR . (2004). Nucleic Acids Res., 32, 893–901.

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G and Linsley PS . (2003). Nat. Biotechnol., 21, 635–637.

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P and Ahringer J . (2003). Nature, 421, 231–237.

  • Kawasaki H, Suyama E, Iyo M and Taira K . (2003). Nucleic Acids Res., 31, 981–987.

  • Kawasaki H and Taira K . (2004). Nature, 431, 211–217.

  • Kiger A, Baum B, Jones S, Jones M, Coulson A, Echeverri C and Perrimon N . (2003). J. Biol., 2, 27.

  • Kuhajda FP . (2000). Nutrition, 16, 202–208.

  • Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M and Beachy PA . (2003). Science, 299, 2039–2045.

  • Luo B, Heard AD and Lodish HF . (2004). Proc. Natl. Acad. Sci. USA, 101, 5494–5499.

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J and Haber DA . (2004). N. Engl. J. Med., 350, 2129–2139.

  • Mittal V . (2004). Nat. Rev. Genet., 5, 355–365.

  • Neckers L . (2002). Trends Mol. Med., 8, S55–S61.

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H and Sawyers CL . (2001). Proc. Natl. Acad. Sci. USA, 98, 10314–10319.

  • Novina CD and Sharp PA . (2004). Nature, 430, 161–164.

  • Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ and Hannon GJ . (2004). Nature, 428, 427–431.

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE and Meyerson M . (2004). Science, 304, 1497–1500.

  • Pelengaris S, Khan M and Evan GI . (2002). Cell, 109, 321–334.

  • Pelengaris S, Littlewood T, Khan M, Elia G and Evan G . (1999). Mol. Cell, 3, 565–577.

  • Pothof J, van Haaften G, Thijssen K, Kamath RS, Fraser AG, Ahringer J, Plasterk RH and Tijsterman M . (2003). Genes Dev., 17, 443–448.

  • Reddy A and Kaelin Jr WG . (2002). Curr. Opin. Pharmacol., 2, 366–373.

  • Ren YG, Wagner KW, Knee DA, Aza-Blanc P, Nasoff M and Deveraux QL . (2004). Mol. Cell. Biol. Sept. 8 [Epub ahead of print].

  • Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN and Fesik SW . (2003). Proc. Natl. Acad. Sci. USA, 100, 6347–6352.

  • Sen G, Wehrman TS, Myers JW and Blau HM . (2004). Nat. Genet., 36, 183–189.

  • Shirane D, Sugao K, Namiki S, Tanabe M, Iino M and Hirose K . (2004). Nat. Genet., 36, 190–196.

  • Shoemaker DD, Lashkari DA, Morris D, Mittmann M and Davis RW . (1996). Nat. Genet., 14, 450–456.

  • Sledz CA, Holko M, de Veer MJ, Silverman RH and Williams BR . (2003). Nat. Cell Biol., 5, 834–839.

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG and Waterhouse PM . (2000). Nature, 407, 319–320.

  • Snove Jr O and Holen T . (2004). Biochem. Biophys. Res. Commun., 319, 256–263.

  • Sordella R, Bell DW, Haber DA and Settleman J . (2004). Science, 305, 1163–1167.

  • Stark GR, Kerr IM, Williams BRG, Silverman RH and Schreiber RD . (1998). Annu. Rev. Biochem., 67, 227–264.

  • Torrance CJ, Agrawal V, Vogelstein B and Kinzler KW . (2001). Nat. Biotechnol., 19, 940–945.

  • Weinstein IB . (2002). Science, 297, 63–64.

  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG and Griffin JD . (2002). Cancer Cell, 1, 433–443.

  • Wilda M, Fuchs U, Wossmann W and Borkhardt A . (2002). Oncogene, 21, 5716–5724.

  • Yanagawa S, Lee JS and Ishimoto A . (1998). J. Biol. Chem., 273, 32353–32359.

  • Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M and Miyake J . (2004). J. Control Rel., 96, 227–232.

  • Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S and Schultz PG . (2004). Proc. Natl. Acad. Sci. USA, 101, 135–140.

  • Ziauddin J and Sabatini DM . (2001). Nature, 411, 107–110.

Download references

Acknowledgements

We thank the many workers at GNF whose work have helped compile and shape the ideas expressed in this review. We also thank Peter Schultz and the Novartis Research Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Aza-Blanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willingham, A., Deveraux, Q., Hampton, G. et al. RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 23, 8392–8400 (2004). https://doi.org/10.1038/sj.onc.1208217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208217

Keywords

This article is cited by

Search

Quick links