Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs

Abstract

The treatment of schizophrenia has evolved over the past half century primarily in the context of antipsychotic drug development. Although there has been significant progress resulting in the availability and use of numerous medications, these reflect three basic classes of medications (conventional (typical), atypical and dopamine partial agonist antipsychotics) all of which, despite working by varying mechanisms of actions, act principally on dopamine systems. Many of the second-generation (atypical and dopamine partial agonist) antipsychotics are believed to offer advantages over first-generation agents in the treatment for schizophrenia. However, the pharmacological properties that confer the different therapeutic effects of the new generation of antipsychotic drugs have remained elusive, and certain side effects can still impact patient health and quality of life. Moreover, the efficacy of antipsychotic drugs is limited prompting the clinical use of adjunctive pharmacy to augment the effects of treatment. In addition, the search for novel and nondopaminergic antipsychotic drugs has not been successful to date, though numerous development strategies continue to be pursued, guided by various pathophysiologic hypotheses. This article provides a brief review and critique of the current therapeutic armamentarium for treating schizophrenia and drug development strategies and theories of mechanisms of action of antipsychotics, and focuses on novel targets for therapeutic agents for future drug development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miyamoto S, Lieberman JA, Fleischhacker WW, Aoba A, Marder SR . Antipsychotic drugs. In: Tasman A, Kay J, Lieberman JA (eds). Psychiatry, 2nd edn. John Wiley & Sons, Ltd: Chichester, 2003, pp 1928–1964.

    Google Scholar 

  2. Buckley PF . Broad therapeutic uses of atypical antipsychotic medications. Biol Psychiatry 2001; 50: 912–924.

    Article  CAS  PubMed  Google Scholar 

  3. Kane JM, Leucht S, Carpenter D, Docherty JP . Expert consensus guideline series. Optimizing pharmacologic treatment of psychotic disorders. Introduction: methods, commentary, and summary. J Clin Psychiatry 2003; 64(Suppl 12): 5–19.

    PubMed  Google Scholar 

  4. McEvoy JP, Scheifler PL, Frances A . The expert consensus guideline series: treatment of schizophrenia 1999. J Clin Psychiatry 1999; 60: 1–80.

    Google Scholar 

  5. Miyamoto S, Stroup TS, Duncan GE, Aoba A, Lieberman JA . Acute pharmacologic treatment of schizophrenia. In: Hirsch SR, Weinberger DR (eds). Schizophrenia, 2nd edn. Blackwell Science, Oxford, 2003, pp 442–473.

    Chapter  Google Scholar 

  6. Remington G . Understanding antipsychotic ‘atypicality’: a clinical and pharmacological moving target. J Psychiatry Neurosci 2003; 28: 275–284.

    PubMed  PubMed Central  Google Scholar 

  7. Richelson E . Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry 1999; 60(Suppl 10): 5–14.

    CAS  PubMed  Google Scholar 

  8. Miyamoto S, Duncan GE, Goff DC, Lieberman JA . Therapeutics of schizophrenia. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds). Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott Williams & Wilkins, Philadelphia, 2002, pp 775–807.

    Google Scholar 

  9. Miyamoto S, Duncan GE, Mailman RB, Lieberman JA . Developing novel antipsychotic drugs:strategies and goals. Curr Opin CPNS Invest Drugs 2000; 2: 25–39.

    CAS  Google Scholar 

  10. Kane JM . Schizophrenia. N Engl J Med 1996; 334: 34–41.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis DA, Lieberman JA . Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334.

    Article  CAS  PubMed  Google Scholar 

  12. Kane JM . The current status of neuroleptic therapy. J Clin Psychiatry 1989; 50: 322–328.

    CAS  PubMed  Google Scholar 

  13. Sharif ZA . Common treatment goals of antipsychotics: acute treatment. J Clin Psychiatry 1998; 59(Suppl. 19): 5–8.

    PubMed  Google Scholar 

  14. Schulz C, McGorry P . Traditional antipsychotic medications: contemporary clinical use. In: Buckley PF, Waddington JL (eds). Schizophrenia and Mood Disorders: The New Drug Therapies in Clinical Practice. Butterworth-Heinemann: Woburn, MA, pp 2000; 14–20.

    Google Scholar 

  15. Breier A, Wright P, Birkett M, Meehan K, David, Brook S . A double-blind dose response study comparing intramuscular olanzapine, haloperidol and placebo in acutely agitated schizophrenic patients, ACNP 39th Annual Meeting Abstract. American College of Neuropsychopharmacology: Puerto Rico, 2000.

    Google Scholar 

  16. Fleischhacker WW . New developments in the pharmacotherapy of schizophrenia. J Neural Transm 2003; 64(Suppl): 105–117.

    CAS  Google Scholar 

  17. Marder SR, Van Putten T . Antipsychotic medications. In: Schatzberg AF, Nemeroff CB (eds). The American Psychiatric Press Textbook of Psychopharmacology. American Psychiatric Press, Inc.: Washington, DC, pp 1995; 247–261.

    Google Scholar 

  18. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 480–483.

    Article  Google Scholar 

  19. Seeman P, Lee T, Chau-Wong M, Wong K . Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–719.

    Article  CAS  PubMed  Google Scholar 

  20. Seeman P . Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1987; 1: 133–152.

    Article  CAS  PubMed  Google Scholar 

  21. Miyamoto S, Mailman RB, Lieberman JA, Duncan GE . Blunted brain metabolic response to ketamine in mice lacking D1A dopamine receptors. Brain Res 2001; 894: 167–180.

    Article  CAS  PubMed  Google Scholar 

  22. Kapur S, Seeman P . Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci 2000; 25: 161–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Remington G, Kapur S . D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry 1999; 60(Suppl 10): 15–19.

    CAS  PubMed  Google Scholar 

  24. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G . Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538–544.

    Article  CAS  PubMed  Google Scholar 

  25. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S et al. High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry 1996; 153: 948–950.

    Article  CAS  PubMed  Google Scholar 

  26. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33: 227–235.

    Article  CAS  PubMed  Google Scholar 

  27. Kapur S, Zipursky R, Jones C, Remington G, Houle S . Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000; 157: 514–520.

    Article  CAS  PubMed  Google Scholar 

  28. Bigliani V, Mulligan RS, Acton PD, Visvikis D, Ell PJ, Stephenson C et al. In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. epidepride single photon emission tomography (SPET) study. Br J Psychiatry 1999; 175: 231–238.

    Article  CAS  PubMed  Google Scholar 

  29. Xiberas X, Martinot JL, Mallet L, Artiges E, Loc'h C, Maziere B et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–508.

    Article  CAS  PubMed  Google Scholar 

  30. Nyberg S, Farde L . Non-equipotent doses partly explain differences among antipsychotics—implications of PET studies. Psychopharmacology 2000; 148: 22–23.

    Article  CAS  PubMed  Google Scholar 

  31. Waddington JL, Kapur S, Remington GJ . The neuroscience and clinical psychopharmacology of first- and second-generation antipsychotic drugs. In: Hirsch SR, Weinberger DR (eds). Schizophrenia, 2nd edn. Blackwell Science: Oxford, 2003, pp 421–441.

    Google Scholar 

  32. Kapur S, Zipursky R, Roy P, Jones C, Remington G, Reed K et al. The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology 1997; 131: 148–152.

    Article  CAS  PubMed  Google Scholar 

  33. Stip E . Novel antipsychotics: issues and controversies. Typicality of atypical antipsychotics. J Psychiatry Neurosci 2000; 25: 137–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Burt DR, Creese I, Snyder SH . Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 1977; 196: 326–328.

    Article  CAS  PubMed  Google Scholar 

  35. Florijn WJ, Tarazi FI, Creese I . Dopamine receptor subtypes: differential regulation after 8 months treatment with antipsychotic drugs. J Pharmacol Exp Ther 1997; 280: 561–569.

    CAS  PubMed  Google Scholar 

  36. Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykeiwicz O . Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 1978; 274: 897–900.

    Article  CAS  PubMed  Google Scholar 

  37. Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology 2000; 152: 174–180.

    Article  CAS  PubMed  Google Scholar 

  38. Lai H, Carino MA, Horita A . Chronic treatments with zotepine, thioridazine, and haloperidol affect apomorphine-elicited stereotypic behavior and striatal 3H-spiroperidol binding sites in the rat. Psychopharmacology 1981; 75: 388–390.

    Article  CAS  PubMed  Google Scholar 

  39. Fleminger S, Rupniak NM, Hall MD, Jenner P, Marsden CD . Changes in apomorphine-induced stereotypy as a result of subacute neuroleptic treatment correlates with increased D-2 receptors, but not with increases in D-1 receptors. Biochem Pharmacol 1983; 32: 2921–2927.

    Article  CAS  PubMed  Google Scholar 

  40. Bunney BS, Grace AA . Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 1978; 23: 1715–1728.

    Article  CAS  PubMed  Google Scholar 

  41. Chiodo LA, Bunney BS . Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 1983; 3: 1607–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. White FJ, Wang RY . Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 1983; 221: 1054–1057.

    Article  CAS  PubMed  Google Scholar 

  43. Mereu G, Lilliu V, Vargiu P, Muntoni AL, Diana M, Gessa GL . Failure of chronic haloperidol to induce depolarization inactivation of dopamine neurons in unanesthetized rats. Eur J Pharmacol 1994; 264: 449–453.

    Article  CAS  PubMed  Google Scholar 

  44. Mereu G, Lilliu V, Vargiu P, Muntoni AL, Diana M, Gessa GL . Depolarization inactivation of dopamine neurons: an artifact? J Neurosci 1995; 15: 1144–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Melis M, Mereu G, Lilliu V, Quartu M, Diana M, Gessa GL . Haloperidol does not produce dopamine cell depolarization-block in paralyzed, unanesthetized rats. Brain Res 1998; 783: 127–132.

    Article  CAS  PubMed  Google Scholar 

  46. Moore H, Todd CL, Grace AA . Striatal extracellular dopamine levels in rats with haloperidol-induced depolarization block of substantia nigra dopamine neurons. J Neurosci 1998; 18: 5068–5077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boye SM, Rompre PP . Behavioral evidence of depolarization block of dopamine neurons after chronic treatment with haloperidol and clozapine. J Neurosci 2000; 20: 1229–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grace AA, Bunney BS, Moore H, Todd CL . Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 1997; 20: 31–37.

    Article  CAS  PubMed  Google Scholar 

  49. Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O et al. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 1997; 280: 83–97.

    CAS  PubMed  Google Scholar 

  50. Waddington J, Casey D . Comparative pharmacology of classical and novel (second-generation) antipsychotics. In: Buckley PF, Waddington JL (eds). Schizophrenia and Mood Disorders: The New Drug Therapies in Clinical Practice. Butterworth-Heinemann: Woburn, MA, 2000, pp 3–13.

    Google Scholar 

  51. Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B . Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997; 280: 73–82.

    CAS  PubMed  Google Scholar 

  52. Martinot JL, Paillere-Martinot ML, Poirier MF, Dao-Castellana MH, Loc'h C, Maziere B . In vivo characteristics of dopamine D2 receptor occupancy by amisulpride in schizophrenia. Psychopharmacology 1996; 124: 154–158.

    Article  CAS  PubMed  Google Scholar 

  53. Xiberas X, Martinot JL, Mallet L, Artiges E, Canal M, Loc'h C et al. In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol 2001; 21: 207–214.

    Article  CAS  PubMed  Google Scholar 

  54. Bressan RA, Erlandsson K, Jones HM, Mulligan R, Flanagan RJ, Ell PJ et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 2003; 160: 1413–1420.

    Article  PubMed  Google Scholar 

  55. Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL . Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatry 1998; 155: 505–508.

    Article  CAS  PubMed  Google Scholar 

  56. Seeman P . Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38.

    PubMed  Google Scholar 

  57. Meltzer HY, Matsubara S, Lee JC . Classification of typical and atypical antipsychotic drugs on the basis of dopamine D1, D2 and Serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–246.

    CAS  PubMed  Google Scholar 

  58. Lieberman JA . Understanding the mechanism of action of atypical antipsychotic drugs: a review of compounds in use and development. Br J Psychiatry 1993; 163: 7–18.

    Article  Google Scholar 

  59. Duncan GE, Zorn S, Lieberman JA . Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 1999; 4: 418–428.

    Article  CAS  PubMed  Google Scholar 

  60. Kapur S, Zipursky RB, Remington G, Jones C, DaSilva J, Wilson AA et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 1998; 155: 921–928.

    Article  CAS  PubMed  Google Scholar 

  61. Kapur S, Zipursky RB, Remington G . Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999; 156: 286–293.

    CAS  PubMed  Google Scholar 

  62. Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P . A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 2000; 57: 553–559.

    Article  CAS  PubMed  Google Scholar 

  63. Nordstrom AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G . D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 1995; 152: 1444–1449.

    Article  CAS  PubMed  Google Scholar 

  64. Seeman P, Tallerico T . Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry 1998; 3: 123–134.

    Article  CAS  PubMed  Google Scholar 

  65. Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K et al. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology 1993; 112: 308–314.

    Article  CAS  PubMed  Google Scholar 

  66. Bench CJ, Lammertsma AA, Grasby PM, Dolan RJ, Warrington SJ, Boyce M et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology 1996; 124: 141–147.

    Article  CAS  PubMed  Google Scholar 

  67. Keck PJ, Buffenstein A, Ferguson J, Feighner J, Jaffe W, Harrigan EP et al. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo-controlled trial. Psychopharmacology 1998; 140: 173–184.

    Article  CAS  PubMed  Google Scholar 

  68. Goff DC, Posever T, Herz L, Simmons J, Kletti N, Lapierre K et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol 1998; 18: 296–304.

    Article  CAS  PubMed  Google Scholar 

  69. Farde L, Nyberg S, Oxenstierna G, Nakashima Y, Halldin C, Ericsson B . Positron emission tomography studies on D2 and 5-HT2 receptor binding in risperidone-treated schizophrenic patients. J Clin Psychopharmacol 1995; 15: 19S–23S.

    Article  CAS  PubMed  Google Scholar 

  70. Fischman AJ, Bonab AA, Babich JW, Alpert NM, Rauch SL, Elmaleh DR et al. Positron emission tomographic analysis of central 5-hydroxytryptamine2 receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther 1996; 279: 939–947.

    CAS  PubMed  Google Scholar 

  71. Marder SR, Meibach RC . Risperidone in the treatment of schizophrenia. Am J Psychiatry 1994; 151: 825–835.

    Article  CAS  PubMed  Google Scholar 

  72. Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE et al. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 1998; 44: 1099–1117.

    Article  CAS  PubMed  Google Scholar 

  73. Carlsson A . Focusing on dopaminergic stabilizers and 5-HT2A receptor antagonists. Curr Opin CPNS Invest Drugs 2000; 2: 22–24.

    CAS  Google Scholar 

  74. Kapur S, Seeman P . Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? a new hypothesis. Am J Psychiatry 2001; 158: 360–369.

    Article  CAS  PubMed  Google Scholar 

  75. Seeman P, Tallerico T . Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry 1999; 156: 876–884.

    Article  CAS  PubMed  Google Scholar 

  76. Meltzer HY . Pre-clinical pharmacology of atypical antipsychotic drugs: a selective review. Br J Psychiatry 1996; 29(Suppl): 23–31.

    Article  Google Scholar 

  77. Newman-Tancredi A, Chaput C, Verriele L, Millan MJ . Clozapine is a partial agonist at cloned, human serotonin 5-HT1A receptors. Neuropharmacology 1996; 35: 119–121.

    Article  CAS  PubMed  Google Scholar 

  78. Millan MJ . Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 2000; 295: 853–861.

    CAS  PubMed  Google Scholar 

  79. Keltner NL, Johnson V . Biological perspectives. Aripiprazole: a third generation of antipsychotics begins? Perspect Psychiatr Care 2002; 38: 157–159.

    Article  PubMed  Google Scholar 

  80. Evenden JL . Effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after repeated administration on a conditioned avoidance response (CAR) in the rat. Psychopharmacology 1992; 109: 134–144.

    Article  CAS  PubMed  Google Scholar 

  81. Lucas G, Bonhomme N, De Deurwaerdere P, Le Moal M, Spampinato U . 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 1997; 131: 57–63.

    Article  CAS  PubMed  Google Scholar 

  82. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY . 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001; 76: 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  83. Li X-M, Perry KW, Wong DT, Bymaster FP . Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. Psychopharmacology 1998; 136: 153–161.

    Article  CAS  PubMed  Google Scholar 

  84. Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G et al. Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 2001; 21: 9856–9866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aghajanian GK, Marek GJ . Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 2000; 31: 302–312.

    Article  CAS  PubMed  Google Scholar 

  86. Tanaka E, North RA . Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 1993; 69: 1749–1757.

    Article  CAS  PubMed  Google Scholar 

  87. Ase AR, Amdiss F, Hebert C, Huang N, van Gelder NM, Reader TA . Effects of antipsychotic drugs on dopamine and serotonin contents and metabolites, dopamine and serotonin transporters, and serotonin1A receptors. J Neural Transm 1999; 106: 75–105.

    Article  CAS  PubMed  Google Scholar 

  88. Tarazi FI, Zhang K, Baldessarini RJ . Olanzapine, quetiapine, and risperidone: long-term effects on monoamine transporters in rat forebrain. Neurosci Lett 2000; 287: 81–84.

    Article  CAS  PubMed  Google Scholar 

  89. Ichikawa J, Dai J, O'Laughlin IA, Fowler WL, Meltzer HY . Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 2002; 26: 325–339.

    Article  CAS  PubMed  Google Scholar 

  90. Deutsch SI, Mastropaolo J, Schwartx BL, Rosse R, Morihisa JM . A ‘glutamatergic hypothesis’ of schizophrenia. Rationale for pharmacotherapy with glycine. Clin Neuropharmacol 1989; 12: 1–13.

    Article  CAS  PubMed  Google Scholar 

  91. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  92. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  93. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  PubMed  Google Scholar 

  94. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  95. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al. NMDA receptor function and human cognition—The effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14: 301–307.

    Article  CAS  PubMed  Google Scholar 

  96. Bakshi VP, Geyer MA . Antagonism of phencyclidine-induced deficits in prepulse inhibition by the putative atypical antipsychotic olanzapine. Psychopharmacology 1995; 122: 198–201.

    Article  CAS  PubMed  Google Scholar 

  97. Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K et al. Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors. Psychopharmacology 1995; 120: 67–74.

    Article  CAS  PubMed  Google Scholar 

  98. Duncan GE, Leipzig JN, Mailman RB, Lieberman JA . Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 1998; 812: 65–75.

    Article  CAS  PubMed  Google Scholar 

  99. Wang RY, Liang X . M100907 and clozapine, but not haloperidol or raclopride, prevent phencyclidine-induced blockade of NMDA responses in pyramidal neurons of the rat medial prefrontal cortical slice. Neuropsychopharmacology 1998; 19: 74–85.

    Article  CAS  PubMed  Google Scholar 

  100. Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA . Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism. J Pharmacol Exp Ther 2000; 293: 8–14.

    CAS  PubMed  Google Scholar 

  101. Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY . Clozapine and haloperidol modulate N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 1997; 283: 226–234.

    CAS  PubMed  Google Scholar 

  102. Arvanov VL, Wang RY . Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. J Pharmacol Exp Ther 1999; 289: 1000–1006.

    CAS  PubMed  Google Scholar 

  103. Bakshi VP, Swerdlow NR, Geyer MA . Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 1994; 271: 787–794.

    CAS  PubMed  Google Scholar 

  104. Duncan GE, Sheitman BB, Lieberman JA . An integrated view of pathophysiological models of schizophrenia. Brain Res Rev 1999; 29: 250–264.

    Article  CAS  PubMed  Google Scholar 

  105. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci U S A 2003; 100: 13674–13679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pietraszek M, Ossowska K . Chronic treatment with haloperidol diminishes the phencyclidine-induced sensorimotor gating deficit in rats. Naunyn-Schmiedeberg's Arch Pharmacol 1998; 357: 466–471.

    Article  CAS  Google Scholar 

  107. Ossowska K, Pietraszek M, Wardas J, Nowak G, Zajaczkowski W, Wolfarth S et al. The role of glutamate receptors in antipsychotic drug action. Amino Acids 2000; 19: 87–94.

    Article  CAS  PubMed  Google Scholar 

  108. Duncan GE, Miyamoto S, Lieberman JA . Chronic administration of haloperidol and olanzapine attenuates ketamine-induced brain metabolic activation. J Pharmacol Exp Ther 2003; 305: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  109. Giardino L, Bortolotti F, Orazzo C, Pozza M, Monteleone P, Calza L et al. Effect of chronic clozapine administration on MK801-binding sites in the rat brain: a side-preference action in cortical areas. Brain Res 1997; 762: 216–218.

    Article  CAS  PubMed  Google Scholar 

  110. McCoy L, Cox C, Richfield EK . Antipsychotic drug regulation of AMPA receptor affinity states and GluR1, GluR2 splice variant expression. Synapse 1998; 28: 195–207.

    Article  CAS  PubMed  Google Scholar 

  111. Ossowska K, Pietraszek M, Wardas J, Nowak G, Wolfarth S . Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn-Schmiedeberg's Arch Pharmacol 1999; 359: 280–287.

    Article  CAS  Google Scholar 

  112. Spurney CF, Baca SM, Murray AM, Jaskiw GE, Kleinman JE, Hyde TM . Differential effects of haloperidol and clozapine on ionotropic glutamate receptors in rats. Synapse 1999; 34: 266–276.

    Article  CAS  PubMed  Google Scholar 

  113. Tarazi FI, Florijn WJ, Creese I . Regulation of ionotropic glutamate receptors following subchronic and chronic treatment with typical and atypical antipsychotics. Psychopharmacology 1996; 128: 371–379.

    Article  CAS  PubMed  Google Scholar 

  114. Tascedda F, Lovati E, Blom JM, Muzzioli P, Brunello N, Racagni G et al. Regulation of ionotropic glutamate receptors in the rat brain in response to the atypical antipsychotic seroquel (quetiapine fumarate). Neuropsychopharmacology 1999; 21: 211–217.

    Article  CAS  PubMed  Google Scholar 

  115. Tarazi FI, Baldessarini RJ, Kula NS, Zhang K . Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: implications for antipsychotic drug treatment. J Pharmacol Exp Ther 2003; 306: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  116. Meador-Woodruff JH, King RE, Damask SP, Bovenkerk KA . Differential regulation of hippocampal AMPA and kainate receptor subunit expression by haloperidol and clozapine. Mol Psychiatry 1996; 1: 41–53.

    CAS  PubMed  Google Scholar 

  117. Eastwood SL, Porter RH, Harrison PJ . The effect of chronic haloperidol treatment on glutamate receptor subunit (GluR1, GluR2, KA1, KA2, NR1) mRNAs and glutamate binding protein mRNA in rat forebrain. Neurosci Lett 1996; 212: 163–166.

    Article  CAS  PubMed  Google Scholar 

  118. Fitzgerald LW, Deutch AY, Gasic G, Heinemann SF, Nestler EJ . Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 1995; 15: 2453–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Riva MA, Tascedda F, Lovati E, Racagni G . Regulation of NMDA receptor subunit messenger RNA levels in the rat brain following acute and chronic exposure to antipsychotic drugs. Brain Res Mol Brain Res 1997; 50: 136–142.

    Article  CAS  PubMed  Google Scholar 

  120. Healy DJ, Meador-Woodruff JH . Clozapine and haloperidol differentially affect AMPA and kainate receptor subunit mRNA levels in rat cortex and striatum. Brain Res Mol Brain Res 1997; 47: 331–338.

    Article  CAS  PubMed  Google Scholar 

  121. Tascedda F, Blom JM, Brunello N, Zolin K, Gennarelli M, Colzi A et al. Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats. Biol Psychiatry 2001; 50: 117–122.

    Article  CAS  PubMed  Google Scholar 

  122. Ossowska K, Pietraszek M, Wardas J, Dziedzicka-Wasylewska M, Nowicka D, Wolfarth S . Chronic treatments with haloperidol and clozapine alter the level of NMDA-R1 mRNA in the rat brain: an in situ hybridization study. Pol J Pharmacol 2002; 54: 1–9.

    CAS  PubMed  Google Scholar 

  123. Schmitt A, Zink M, Muller B, May B, Herb A, Jatzko A et al. Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Neurochem Res 2003; 28: 235–241.

    Article  CAS  PubMed  Google Scholar 

  124. Kontkanen O, Toronen P, Lakso M, Wong G, Castren E . Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 2002; 83: 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  125. Kim T, Tao-Cheng JH, Eiden LE, Loh YP . Chromogranin A, an ‘on/off’ switch controlling dense-core secretory granule biogenesis. Cell 2001; 106: 499–509.

    Article  CAS  PubMed  Google Scholar 

  126. Sudhof TC, Rizo J . Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 1996; 17: 379–388.

    Article  CAS  PubMed  Google Scholar 

  127. Bultynck G, Vermassen E, Szlufcik K, De Smet P, Fissore RA, Callewaert G et al. Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 2003; 311: 1181–1193.

    Article  CAS  PubMed  Google Scholar 

  128. Braunewell KH, Gundelfinger ED . Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 1999; 295: 1–12.

    Article  CAS  PubMed  Google Scholar 

  129. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  130. Bauer R, Mayr A, Lederer W, Needham PL, Kilpatrick IC, Fleischhacker WW et al. Further evidence that behavioral tests and neuropeptide mRNA and tissue level alterations can differentiate between typical and atypical antipsychotic drugs. Neuropsychopharmacology 2000; 23: 46–55.

    Article  CAS  PubMed  Google Scholar 

  131. Kikuchi T, Tottori K, Uwahodo Y, Hirose T, Miwa T, Oshiro Y et al. 7-(4-butyloxy)-3,4-dihydro-2(1H)-quino linone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 1995; 274: 329–336.

    CAS  PubMed  Google Scholar 

  132. Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999; 20: 612–627.

    Article  CAS  PubMed  Google Scholar 

  133. Semba J, Watanabe A, Kito S, Toru M . Behavioural and neurochemical effects of OPC-14597, a novel antipsychotic drug, on dopaminergic mechanisms in rat brain. Neuropharmacology 1995; 34: 785–791.

    Article  CAS  PubMed  Google Scholar 

  134. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002; 302: 381–389.

    Article  CAS  PubMed  Google Scholar 

  135. Carlsson A, Waters N, Waters S, Carlsson ML . Network interactions in schizophrenia—therapeutic implications. Brain Res Brain Res Rev 2000; 31: 342–349.

    Article  CAS  PubMed  Google Scholar 

  136. Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA . The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002; 441: 137–140.

    Article  CAS  PubMed  Google Scholar 

  137. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–1411.

    Article  CAS  PubMed  Google Scholar 

  138. Bowles TM, Levin GM . Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 2003; 37: 687–694.

    Article  CAS  PubMed  Google Scholar 

  139. Yokoi F, Grunder G, Biziere K, Stephane M, Dogan AS, Dannals RF et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and raclopride. Neuropsychopharmacology 2002; 27: 248–259.

    Article  CAS  PubMed  Google Scholar 

  140. Davis JM, Schaffer CB, Killian GA, Kinard C, Chan C . Important issues in the drug treatment of schizophrenia. Schizophr Bull 1980; 6: 70–87.

    Article  CAS  PubMed  Google Scholar 

  141. American Psychiatric Association. Practice Guideline for the Treatment of Patients with Schizophrenia. Practice Guidelines for the Treatment of Psychiatric Disorders. American Psychiatric Association, Washington, D.C, 2000, pp 299–412.

  142. Fleischhacker WW . New drugs for the treatment of schizophrenic patients. Acta Psychiatr Scand 1995; 388(Suppl): 24–30.

    Article  CAS  Google Scholar 

  143. Spohn HE, Strauss ME . Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. J Abnorm Psychol 1989; 98: 367–380.

    Article  CAS  PubMed  Google Scholar 

  144. Meltzer HY, Thompson PA, Lee MA, Ranjan R . Neuropsychologic deficits in schizophrenia: relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology 1996; 14: 27S–33S.

    Article  CAS  PubMed  Google Scholar 

  145. Collaborative Working Group on Clinical Trial Evaluations. Evaluating the effects of antipsychotics on cognition in schizophrenia. Collaborative Working Group on Clinical Trial Evaluations. J Clin Psychiatry 1998; 59(Suppl 12): 35–40.

  146. Tollefson GD . Cognitive function in schizophrenic patients. J Clin Psychiatry 1996; 57(Suppl 11): 31–39.

    PubMed  Google Scholar 

  147. Ayuso-Gutierrez JL, del RV . Factors influencing relapse in the long-term course of schizophrenia. Schizophr Res 1997; 28: 199–206.

    Article  CAS  PubMed  Google Scholar 

  148. Kane JM . Pharmacologic treatment of schizophrenia. Biol Psychiatry 1999; 46: 1396–1408.

    Article  CAS  PubMed  Google Scholar 

  149. Meltzer HY . Long-term effects of neuroleptic drugs on the neuroendocrine system. Adv Biochem Psychopharmacol 1985; 40: 59–68.

    CAS  PubMed  Google Scholar 

  150. Gaebel W . Towards the improvement of compliance: the significance of psycho-education and new antipsychotic drugs. Int Clin Psychopharmacol 1997; 12(Suppl 1): S37–S42.

    Article  PubMed  Google Scholar 

  151. Leucht S, Pitschel-Walz G, Engel RR, Kissling W . Amisulpride, an unusual ‘atypical’ antipsychotic: a meta-analysis of randomized controlled trials. Am J Psychiatry 2002; 159: 180–190.

    Article  PubMed  Google Scholar 

  152. Emsley R, Oosthuizen P . The new and evolving pharmacotherapy of schizophrenia. Psychiatr Clin North Am 2003; 26: 141–163.

    Article  PubMed  Google Scholar 

  153. Markowitz JS, Brown CS, Moore TR . Atypical antipsychotics Part I: pharmacology, pharmacokinetics, and efficacy. Ann Pharmacother 1999; 33: 73–85.

    Article  CAS  PubMed  Google Scholar 

  154. Remington G, Kapur S . Atypical antipsychotics:are some more atypical than others? Psychopharmacology 2000; 148: 3–15.

    Article  CAS  PubMed  Google Scholar 

  155. Geddes J, Freemantle N, Harrison P, Bebbington P . Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 2000; 321: 1371–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Leucht S, Pitschel-Walz G, Abraham D, Kissling W . Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68.

    Article  CAS  PubMed  Google Scholar 

  157. Davis JM, Chen N, Glick ID . A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 2003; 60: 553–564.

    Article  CAS  PubMed  Google Scholar 

  158. Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM et al. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull 2003; 29: 15–31.

    Article  PubMed  Google Scholar 

  159. Kane JM, Gunduz H, Malhortra AK . Second generation antipsychotics in the treatment of schizophrenia: clozapine. In: Breier A, Tran PV, Herrera JM, Tollefson GD, Bymaster FP (eds). Current Issues in the Psychopharmacology of Schizophrenia. Lippincott Williams & Wilkins Healthcare: Philadelphia, 2001, pp 209–223.

    Google Scholar 

  160. Carpenter WTJ, Conley RR, Buchanan RW, Breier A, Tamminga CA . Patient response and resource management: another view of clozapine treatment of schizophrenia. Am J Psychiatry 1995; 152: 827–832.

    Article  PubMed  Google Scholar 

  161. Conley R, Gounaris C, Tamminga C . Clozapine response varies in deficit versus non-deficit schizophrenic subjects. Biol Psychiatry 1994; 35: 746–747.

    Article  Google Scholar 

  162. Meltzer HY . Clozapine: is another view valid? Am J Psychiatry 1995; 152: 821–825.

    Article  CAS  PubMed  Google Scholar 

  163. Buchanan RW, Gold JM . Negative symptoms: diagnosis, treatment and prognosis. Int Clin Psychopharmacol 1996; 11(Suppl 2): 3–11.

    Article  PubMed  Google Scholar 

  164. Collaborative Working Group on Clinical Trial Evaluations. Assessing the effects of atypical antipsychotics on negative symptoms. Collaborative Working Group on Clinical Trial Evaluations. J Clin Psychiatry 1998; 59(Suppl 12): 28–34.

  165. Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 2004; 161: 1–56.

    Article  PubMed  Google Scholar 

  166. Marder SR, Davis JM, Chouinard G . The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the North American trials. J Clin Psychiatry 1997; 58: 538–546.

    Article  CAS  PubMed  Google Scholar 

  167. Goff DC, Evins AE . Negative symptoms in schizophrenia: neurobiological models and treatment response. Harv Rev Psychiatry 1998; 6: 59–77.

    Article  CAS  PubMed  Google Scholar 

  168. Moller HJ, Muller H, Borison RL, Schooler NR, Chouinard G . A path-analytical approach to differentiate between direct and indirect drug effects on negative symptoms in schizophrenic patients. A re-evaluation of the North American risperidone study. Eur Arch Psychiatry Clin Neurosci 1995; 245: 45–49.

    Article  CAS  PubMed  Google Scholar 

  169. Tollefson GD, Sanger TM . Negative symptoms: a path analytic approach to a double-blind, placebo- and haloperidol-controlled clinical trial with olanzapine. Am J Psychiatry 1997; 154: 466–474.

    Article  CAS  PubMed  Google Scholar 

  170. Moller HJ . Neuroleptic treatment of negative symptoms in schizophrenic patients. Efficacy problems and methodological difficulties. Eur Neuropsychopharmacol 1993; 3: 1–11.

    Article  CAS  PubMed  Google Scholar 

  171. Keefe RSE, Silva SG, Perkins DO, Lieberman JA . The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 1999; 25: 201–222.

    Article  CAS  PubMed  Google Scholar 

  172. Meltzer HY, McGurk SR . The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999; 25: 233–255.

    Article  CAS  PubMed  Google Scholar 

  173. Worrel JA, Marken PA, Beckman SE, Ruehter VL . Atypical antipsychotic agents: a critical review. Am J Health Syst Pharm 2000; 57: 238–255.

    Article  CAS  PubMed  Google Scholar 

  174. Mortimer AM . Cognitive function in schizophrenia—do neuroleptics make a difference? Pharmacol Biochem Behav 1997; 56: 789–795.

    Article  CAS  PubMed  Google Scholar 

  175. Velligan DI, Miller AL . Cognitive dysfunction in schizophrenia and its importance to outcome: the place of atypical antipsychotics in treatment. J Clin Psychiatry 1999; 60(Suppl 23): 25–28.

    PubMed  Google Scholar 

  176. Green MF, Braff DL . Translating the basic and clinical cognitive neuroscience of schizophrenia to drug development and clinical trials of antipsychotic medications. Biol Psychiatry 2001; 49: 374–384.

    Article  CAS  PubMed  Google Scholar 

  177. Green MF, Marshall BDJ, Wirshing WC, Ames D, Marder SR, McGurk S et al. Does risperidone improve verbal working memory in treatment-resistant schizophrenia? Am J Psychiatry 1997; 154: 799–804.

    Article  CAS  PubMed  Google Scholar 

  178. Purdon SE, Jones BD, Stip E, Labelle A, Addington D, David SR et al. Neuropsychological change in early phase schizophrenia during 12 months of treatment with olanzapine, risperidone, or haloperidol. The Canadian Collaborative Group for research in schizophrenia.. Arch Gen Psychiatry 2000; 57: 249–258.

    Article  CAS  PubMed  Google Scholar 

  179. Weiss E, Kemmler G, Fleischhacker WW . Improvement of cognitive dysfunction after treatment with second-generation antipsychotics. Arch Gen Psychiatry 2002; 59: 572–573.

    Article  PubMed  Google Scholar 

  180. Harvey PD, Keefe RS . Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 2001; 158: 176–184.

    Article  CAS  PubMed  Google Scholar 

  181. Bilder RM, Goldman RS, Volavka J, Czobor P, Hoptman M, Sheitman B et al. Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 1018–1028.

    Article  PubMed  Google Scholar 

  182. Green MF, Marder SR, Glynn SM, McGurk SR, Wirshing WC, Wirshing DA et al. The neurocognitive effects of low-dose haloperidol: a two-year comparison with risperidone. Biol Psychiatry 2002; 51: 972–978.

    Article  CAS  PubMed  Google Scholar 

  183. Carpenter WT, Gold JM . Another view of therapy for cognition in schizophrenia. Biol Psychiatry 2002; 51: 969–971.

    Article  PubMed  Google Scholar 

  184. Meltzer HY, Sumiyoshi T . Atypical antipsychotic drugs improve cognition in schizophrenia. Biol Psychiatry 2003; 53: 265–267.

    Article  PubMed  Google Scholar 

  185. Kane J, Honigfeld G, Singer J, Meltzer H . Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–796.

    Article  CAS  PubMed  Google Scholar 

  186. Fleischhacker WW . Clozapine: a comparison with other novel antipsychotics. J Clin Psychiatry 1999; 60: 30–34.

    CAS  PubMed  Google Scholar 

  187. Conley RR, Kelly DL . Management of treatment resistance in schizophrenia. Biol Psychiatry 2001; 50: 898–911.

    Article  CAS  PubMed  Google Scholar 

  188. Chakos M, Lieberman J, Hoffman E, Bradford D, Sheitman B . Effectiveness of second-generation antipsychotics in patients with treatment-resistant schizophrenia: a review and meta-analysis of randomized trials. Am J Psychiatry 2001; 158: 518–526.

    Article  CAS  PubMed  Google Scholar 

  189. Patel JK, Pinals DA, Breier A . Schizophrenia and other psychoses. In: Tasman A, Kay J, Lieberman JA (eds). PSYCHIATRY, 2nd edn. John Wiley & Sons, Ltd: Chichester, 2003, pp 1131–1206.

    Google Scholar 

  190. Small JG, Hirsch SR, Arvanitis LA, Miller BG, Link CG . Quetiapine in patients with schizophrenia. A high- and low-dose double-blind comparison with placebo. Seroquel Study Group. Arch Gen Psychiatry 1997; 54: 549–557.

    Article  CAS  PubMed  Google Scholar 

  191. Dev V, Raniwalla J . Quetiapine: a review of its safety in the management of schizophrenia. Drug Saf 2000; 23: 295–307.

    Article  CAS  PubMed  Google Scholar 

  192. Chouinard G . Effects of risperidone in tardive dyskinesia: an analysis of the Canadian multicenter risperidone study. J Clin Psychopharmacol 1995; 15: 36S–44S.

    Article  CAS  PubMed  Google Scholar 

  193. Csernansky J, Okamoto A . Risperidone vs haloperidol for prevention of relapse in schizophrenia and schizoaffective disorders: a long-term double-blind comparison. The 10th Biennial Winter Workshop on Schizophrenia. Davos, Switzerland, 2000.

    Google Scholar 

  194. Tran PV, Dellva MA, Tollefson GD, Beasley CMJ, Potvin JH, Kiesler GM . Extrapyramidal symptoms and tolerability of olanzapine versus haloperidol in the acute treatment of schizophrenia. J Clin Psychiatry 1997; 58: 205–211.

    Article  CAS  PubMed  Google Scholar 

  195. Tollefson GD, Beasley CMJ, Tamura RN, Tran PV, Potvin JH . Blind, controlled, long-term study of the comparative incidence of treatment-emergent tardive dyskinesia with olanzapine or haloperidol. Am J Psychiatry 1997; 154: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  196. Ferris P . Ziprasidone. Curr Opin CPNS Invest Drugs 2000; 2: 58–70.

    CAS  Google Scholar 

  197. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999; 156: 1686–1696.

    CAS  PubMed  Google Scholar 

  198. Taylor DM, McAskill R . Atypical antipsychotics and weight gain—a systematic review. Acta Psychiatr Scand 2000; 101: 416–432.

    Article  CAS  PubMed  Google Scholar 

  199. Sussman N . Review of atypical antipsychotics and weight gain. J Clin Psychiatry 2001; 62(Suppl 23): 5–12.

    CAS  PubMed  Google Scholar 

  200. Kane JM, Carson WH, Saha AR, McQuade RD, Ingenito GG, Zimbroff DL et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 2002; 63: 763–771.

    Article  CAS  PubMed  Google Scholar 

  201. Potkin SG, Saha AR, Kujawa MJ, Carson WH, Ali M, Stock E et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 2003; 60: 681–690.

    Article  CAS  PubMed  Google Scholar 

  202. Pigott TA, Carson WH, Saha AR, Torbeyns AF, Stock EG, Ingenito GG . Aripiprazole for the prevention of relapse in stabilized patients with chronic schizophrenia: a placebo-controlled 26-week study. J Clin Psychiatry 2003; 64: 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  203. Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M et al. Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 2003; 6: 325–337.

    Article  CAS  PubMed  Google Scholar 

  204. Marder SR, McQuade RD, Stock E, Kaplita S, Marcus R, Safferman AZ et al. Aripiprazole in the treatment of schizophrenia: safety and tolerability in short-term, placebo-controlled trials. Schizophr Res 2003; 61: 123–136.

    Article  PubMed  Google Scholar 

  205. Crismon ML, DeLeon A, Miller AL . Aripiprazole: does partial dopaminergic agonism translate into clinical benefits? Ann Pharmacother 2003; 37: 738–740.

    Article  PubMed  Google Scholar 

  206. Sedvall GC, Karlsson P . Pharmacological manipulation of D1-dopamine receptor function in schizophrenia. Neuropsychopharmacology 1999; 22: S181–S188.

    Article  Google Scholar 

  207. Goldman-Rakic PS . The relevance of the dopamine-D1 receptor in the cognitive symptoms of schizophrenia. Neuropsychopharmacology 1999; 21: S170–S180.

    Article  CAS  Google Scholar 

  208. Waddington JL . Pre- and postsynaptic D1 to D5 dopamine receptor mechanisms in relation to antipsychotic activity. In: Barnes TRE (ed). Antipsychotic Drugs and Their Side Effects. Academic Press, London, 1993, pp 65–85.

    Chapter  Google Scholar 

  209. Karlsson P, Smith L, Farde L, Harnryd C, Sedvall G, Wiesel FA . Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology 1995; 121: 309–316.

    Article  CAS  PubMed  Google Scholar 

  210. Den Boer JA, van Megen HJ, Fleischhacker WW, Louwerens JW, Slaap BR, Westenberg HG et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology 1995; 121: 317–322.

    Article  CAS  PubMed  Google Scholar 

  211. Karle J, Clemmesen L, Hansen L, Andersen M, Andersen J, Fensbo C et al. NNC 01-0687, a selective dopamine D1 receptor antagonist, in the treatment of schizophrenia. Psychopharmacology 1995; 121: 328–329.

    Article  CAS  PubMed  Google Scholar 

  212. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS . Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 1994; 116: 143–151.

    Article  CAS  PubMed  Google Scholar 

  213. Cai JX, Arnsten AF . Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 1997; 283: 183–189.

    CAS  PubMed  Google Scholar 

  214. Schneider JS, Sun ZQ, Roeltgen DP . Effects of dihydrexidine, a full dopamine D-1 receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res 1994; 663: 140–144.

    Article  CAS  PubMed  Google Scholar 

  215. Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385: 634–636.

    Article  CAS  PubMed  Google Scholar 

  216. Goldman-Rakic PS, Muly III EC, Williams GV . D1 receptors in prefrontal cells and circuits. Brain Res Rev 2000; 31: 295–301.

    Article  CAS  PubMed  Google Scholar 

  217. Williams GV, Goldman-Rakic PS . Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995; 376: 572–575.

    Article  CAS  PubMed  Google Scholar 

  218. Ghosh D, Snyder SE, Watts VJ, Mailman RB, Nichols DE . 9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naphisoquinoline: a potent full dopamine D1 agonist containing a rigid-beta-phenyldopamine pharmacophore. J Med Chem 1996; 39: 549–555.

    Article  CAS  PubMed  Google Scholar 

  219. Castner SA, Williams GV, Goldman-Rakic PS . Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000; 287: 2020–2022.

    Article  CAS  PubMed  Google Scholar 

  220. Nichols DE, Mailman RB . Substituted hexa-hydro[a]phenanthridines. US Patent 1995; 5: 134.

    Google Scholar 

  221. Nichols DE, Mailman RB . Fused isoquinolines as dopamine receptor ligands. US Patent 1999; 5: 110.

    Google Scholar 

  222. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–614.

    Article  CAS  PubMed  Google Scholar 

  223. Seeman P, Guan HC, Van Tol HH . Dopamine D4 receptors elevated in schizophrenia. Nature 1993; 365: 441–445.

    Article  CAS  PubMed  Google Scholar 

  224. Lahti RA, Roberts RC, Cochrane EV, Primus RJ, Gallager DW, Conley RR et al. Direct determination of dopamine D4 receptors in normal and schizophrenic postmortem brain tissue: a NGD-94-1 study. Mol Psychiatry 1998; 3: 528–533.

    Article  CAS  PubMed  Google Scholar 

  225. Mansbach RS, Brooks EW, Sanner MA, Zorn SH . Selective dopamine D4 receptor antagonists reverse apomorphine-induced blockade of prepulse inhibition. Psychopharmacology 1998; 135: 194–200.

    Article  CAS  PubMed  Google Scholar 

  226. Feldpausch DL, Needham LM, Stone MP, Althaus JS, Yamamoto BK, Svensson KA et al. The role of dopamine D4 receptor in the induction of behavioral sensitization to amphetamine and accompanying biochemical and molecular adaptations. J Pharmacol Exp Ther 1998; 286: 497–508.

    CAS  PubMed  Google Scholar 

  227. Merchant KM, Gill GS, Harris DW, Huff RM, Eaton MJ, Lookingland K et al. Pharmacological characterization of U-101387, a dopamine D4 receptor selective antagonist. J Pharmacol Exp Ther 1996; 279: 1392–1403.

    CAS  PubMed  Google Scholar 

  228. Danysz W . Sonepiprazole. Curr Opin CPNS Invest Drugs 2000; 2: 97–104.

    CAS  Google Scholar 

  229. Kramer MS, Last B, Getson A, Reines SA . The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997; 54: 567–572.

    Article  CAS  PubMed  Google Scholar 

  230. Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR . Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci 1997; 18: 186–188.

    Article  CAS  PubMed  Google Scholar 

  231. Mansbach RS, Brooks EW, Sanner MA, Zorn SH . Selective dopamine D4 receptor antagonists reverse apomorphine-induced blockade of prepulse inhibition. Psychopharmacology 1998; 135: 194–200.

    Article  CAS  PubMed  Google Scholar 

  232. Truffinet P, Tamminga CA, Fabre LF, Meltzer HY, Riviere ME, Papillon-Downey C . Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia. Am J Psychiatry 1999; 156: 419–425.

    CAS  PubMed  Google Scholar 

  233. Rowley M, Bristow LJ, Hutson PH . Current and novel approaches to the drug treatment of schizophrenia. J Med Chem 2001; 44: 477–501.

    Article  CAS  PubMed  Google Scholar 

  234. Schwartz JC, Diaz J, Pilon C, Sokoloff P . Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 2000; 31: 277–287.

    Article  CAS  PubMed  Google Scholar 

  235. Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN . Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry 1997; 54: 225–232.

    Article  CAS  PubMed  Google Scholar 

  236. Witkin J, Gasior M, Acri J, Beekman M, Thurkauf A, Yuan J et al. Atypical antipsychotic-like effects of the dopamine D3 receptor agonist, (+)-PD 128,907. Eur J Pharmacol 1998; 347: R1–R3.

    Article  CAS  PubMed  Google Scholar 

  237. Hackling AE, Stark H . Dopamine D3 receptor ligands with antagonist properties. Chembiochem 2002; 3: 946–961.

    Article  CAS  PubMed  Google Scholar 

  238. Millan MJ, Dekeyne A, Rivet JM, Dubuffet T, Lavielle G, Brocco M . S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 2000; 293: 1063–1073.

    CAS  PubMed  Google Scholar 

  239. Lacroix LP, Hows ME, Shah AJ, Hagan JJ, Heidbreder CA . Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 2003; 28: 839–849.

    Article  CAS  PubMed  Google Scholar 

  240. Abi-Saab WM, D'Souza DC, Madonick SH, Krystal JH . Targeting the glutamate system. In: Breier A, Tran PV, Herrera JM, Tollefson GD, Bymaster FP (eds). Current Issues in the Psychopharmacology of Schizophrenia. Lippincott Williams & Wilkins Healthcare, Philadelphia, 2001, pp 304–332.

    Google Scholar 

  241. Goff DC, Coyle JT . The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001; 158: 1367–1377.

    Article  CAS  PubMed  Google Scholar 

  242. Leeson PD, Iversen LL . The glycine site on the NMDA receptor: structure–activity relationships and therapeutic potential. J Med Chem 1994; 37: 4053–4067.

    Article  CAS  PubMed  Google Scholar 

  243. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56: 21–27.

    Article  CAS  PubMed  Google Scholar 

  244. Goff DC, Tsai G, Manoach DS, Coyle JT . Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 1995; 152: 1213–1215.

    Article  CAS  PubMed  Google Scholar 

  245. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D . Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 1996; 169: 610–617.

    Article  CAS  PubMed  Google Scholar 

  246. Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP . Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 1994; 151: 1234–1236.

    Article  CAS  PubMed  Google Scholar 

  247. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M . Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29–36.

    Article  CAS  PubMed  Google Scholar 

  248. Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT . D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 1996; 153: 1628–1630.

    Article  CAS  PubMed  Google Scholar 

  249. Goff DC, Henderson DC, Evins AE, Amico E . A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 1999; 45: 512–514.

    Article  CAS  PubMed  Google Scholar 

  250. Hashimoto A, Oka T . Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol 1997; 52: 325–353.

    Article  CAS  PubMed  Google Scholar 

  251. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  252. Bergeron R, Meyer TM, Coyle JT, Greene RW . Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 1998; 95: 15730–15734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Berger AJ, Dieudonne S, Ascher P . Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 1998; 80: 3336–3340.

    Article  CAS  PubMed  Google Scholar 

  254. Javitt DC, Sershen H, Hashim A, Lajtha A . Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 1997; 17: 202–204.

    Article  CAS  PubMed  Google Scholar 

  255. Javitt DC, Frusciante M . Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology 1997; 129: 96–98.

    Article  CAS  PubMed  Google Scholar 

  256. Danbolt NC . Glutamate uptake. Prog Neurobiol 2001; 65: 1–105.

    Article  CAS  PubMed  Google Scholar 

  257. Gadea A, Lopez-Colome AM . Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J Neurosci Res 2001; 63: 453–460.

    Article  CAS  PubMed  Google Scholar 

  258. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH . Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 2001; 158: 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  259. McCullumsmith RE, Meador-Woodruff JH . Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 2002; 26: 368–375.

    Article  CAS  PubMed  Google Scholar 

  260. Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA . Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 2003; 347: 81–84.

    Article  CAS  PubMed  Google Scholar 

  261. Moghaddam B, Adams B, Verman A, Daly D . Activation of glutamatergic neurotransmission by ketamine—a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Chavez-Noriega LE, Schaffhauser H, Campbell UC . Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Target CNS Neurol Disord 2002; 1: 261–281.

    Article  CAS  Google Scholar 

  263. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotrophic glutamate receptor agonist in rats. Science 1998; 281: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  264. Bubser M, Keseberg U, Notz PK, Schmidt WJ . Differential behavioral and neurochemical effects of competitive and non-competitive NMDA receptor antagonists in rats. Eur J Pharmacol 1992; 229: 75–82.

    Article  CAS  PubMed  Google Scholar 

  265. Hauber W, Andersen R . The non-NMDA glutamate receptor antagonist GYKI 52466 counteracts locomotor stimulation and anticataleptic activity induced by the NMDA antagonist dizocilpine. Naunyn Schmiedeberg's Arch Pharmacol 1993; 348: 486–490.

    Article  CAS  Google Scholar 

  266. Willins DL, Narayanan S, Wallace LJ, Uretsky NJ . The role of dopamine and AMPA/kainate receptors in the nucleus accumbens in the hypermotility response to MK801. Pharmacol Biochem Behav 1993; 46: 881–887.

    Article  CAS  PubMed  Google Scholar 

  267. Sharp JW, Petersen DL, Langford MT . DNQX inhibits phencyclidine (PCP) and ketamine induction of the hsp 70 heat shock gene in the rat cingulate and retrosplenial cortex. Brain Res 1995; 687: 114–124.

    Article  CAS  PubMed  Google Scholar 

  268. Svensson TH, Mathe JM . Atypical antipsychotic-like effect of AMPA receptor antagonists in the rat. Amino Acids 2000; 19: 221–226.

    Article  CAS  PubMed  Google Scholar 

  269. Hampson RE, Rogers G, Lynch G, Deadwyler SA . Facilitative effects of the ampakine CX516 on short-term memory in rats: correlations with hippocampal neuronal activity. J Neurosci 1998; 18: 2748–2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Hampson RE, Rogers G, Lynch G, Deadwyler SA . Facilitative effects of the ampakine CX516 on short-term memory in rats: enhancement of delayed-nonmatch-to-sample performance. J Neurosci 1998; 18: 2740–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Johnson SA, Luu NT, Herbst TA, Knapp R, Lutz D, Arai A et al. Synergistic interactions between ampakines and antipsychotic drugs. J Pharmacol Exp Ther 1999; 289: 392–397.

    CAS  PubMed  Google Scholar 

  272. Goff D, Berman I, Posever T, Leahy L, Lynch G . A preliminary dose-escalation trial of CX 516 (ampakine) added to clozapine in schizophrenia. Schizophr Res 1999; 36: 280.

    Google Scholar 

  273. Marenco S, Egan MF, Goldberg TE, Knable MB, McClure RK, Winterer G et al. Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr Res 2002; 57: 221–226.

    Article  PubMed  Google Scholar 

  274. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  275. Grima G, Benz B, Parpura V, Cuenod M, Do KQ . Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophr Res 2003; 62: 213–224.

    Article  PubMed  Google Scholar 

  276. Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y et al. Glutathione and signal transduction in the mammalian CNS. J Neurochem 1999; 73: 889–902.

    Article  CAS  PubMed  Google Scholar 

  277. Goldman-Rakic PS, Lidow MS, Gallager DW . Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 1990; 10: 2125–2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Arnsten AF, Steere JC, Hunt RD . The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 1996; 53: 448–455.

    Article  CAS  PubMed  Google Scholar 

  279. Friedman JI, Temporini H, Davis KL . Pharmacologic strategies for augmenting cognitive performance in schizophrenia. Biol Psychiatry 1999; 45: 1–16.

    Article  CAS  PubMed  Google Scholar 

  280. Friedman JI, Adler DN, Davis KL . The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. Biol Psychiatry 1999; 46: 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  281. Arnsten AF, Goldman-Rakic PS . Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 1985; 230: 1273–1276.

    Article  CAS  PubMed  Google Scholar 

  282. Fields RB, Van Kammen DP, Peters JL, Rosen J, Van Kammen WB, Nugent A et al. Clonidine improves memory function in schizophrenia independently from change in psychosis. Preliminary findings. Schizophr Res 1988; 1: 417–423.

    Article  CAS  PubMed  Google Scholar 

  283. Uhlen S, Muceniece R, Rangel N, Tiger G, Wikberg JE . Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacol Toxicol 1995; 76: 353–364.

    Article  CAS  PubMed  Google Scholar 

  284. Arnsten AF, Cai JX, Goldman-Rakic PS . The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 1988; 8: 4287–4298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Friedman JI, Adler DN, Temporini HD, Kemether E, Harvey PD, White L et al. Guanfacine treatment of cognitive impairment in schizophrenia. Neuropsychopharmacology 2001; 25: 402–409.

    Article  CAS  PubMed  Google Scholar 

  286. Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM et al. S18327 (1-ethyl]3-phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: I. Receptorial, neurochemical, and electrophysiological profile. J Pharmacol Exp Ther 2000; 292: 38–53.

    CAS  PubMed  Google Scholar 

  287. Gobert A, Rivet JM, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ . Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 1998; 84: 413–429.

    Article  CAS  PubMed  Google Scholar 

  288. Litman RE, Su TP, Potter WZ, Hong WW, Pickar D . Idazoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br J Psychiatry 1996; 168: 571–579.

    Article  CAS  PubMed  Google Scholar 

  289. Elman I, Goldstein DS, Eisenhofer G, Folio J, Malhotra AK, Adler CM et al. Mechanism of peripheral noradrenergic stimulation by clozapine. Neuropsychopharmacology 1999; 20: 29–34.

    Article  CAS  PubMed  Google Scholar 

  290. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  PubMed  Google Scholar 

  292. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  294. Liljequist R, Haapalinna A, Ahlander M, Li YH, Mannisto PT . Catechol O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res 1997; 82: 195–202.

    Article  CAS  PubMed  Google Scholar 

  295. Gasparini M, Fabrizio E, Bonifati V, Meco G . Cognitive improvement during Tolcapone treatment in Parkinson's disease. J Neural Transm 1997; 104: 887–894.

    Article  CAS  PubMed  Google Scholar 

  296. Holden C . Neuroscience. Deconstructing schizophrenia. Science 2003; 299: 333–335.

    Article  CAS  PubMed  Google Scholar 

  297. Watkins P . COMT inhibitors and liver toxicity. Neurology 2000; 55: S51–S52.

    Article  CAS  PubMed  Google Scholar 

  298. Borges N . Tolcapone-related liver dysfunction: implications for use in Parkinson's disease therapy. Drug Saf 2003; 26: 743–747.

    Article  CAS  PubMed  Google Scholar 

  299. Rezvani AH, Levin ED . Cognitive effects of nicotine. Biol Psychiatry 2001; 49: 258–267.

    Article  CAS  PubMed  Google Scholar 

  300. Simosky JK, Stevens KE, Freedman R . Nicotinic agonists and psychosis. Curr Drug Target CNS Neurol Disord 2002; 1: 149–162.

    Article  CAS  Google Scholar 

  301. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 1998; 24: 189–202.

    Article  CAS  PubMed  Google Scholar 

  302. Simosky JK, Stevens KE, Adler LE, Freedman R . Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology 2003; 165: 386–396.

    Article  CAS  PubMed  Google Scholar 

  303. Simosky JK, Stevens KE, Kem WR, Freedman R . Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol Psychiatry 2001; 50: 493–500.

    Article  CAS  PubMed  Google Scholar 

  304. Schreiber R, Dalmus M, De Vry J . Effects of alpha 4/beta 2- and alpha 7-nicotine acetylcholine receptor agonists on prepulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology 2002; 159: 248–257.

    Article  CAS  PubMed  Google Scholar 

  305. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ . A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41: 31–37.

    CAS  PubMed  Google Scholar 

  306. Bontempi B, Whelan KT, Risbrough VB, Rao TS, Buccafusco JJ, Lloyd GK et al. SIB-1553A, (+/-)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride, a subtype-selective ligand for nicotinic acetylcholine receptors with putative cognitive-enhancing properties: effects on working and reference memory performances in aged rodents and nonhuman primates. J Pharmacol Exp Ther 2001; 299: 297–306.

    CAS  PubMed  Google Scholar 

  307. Lloyd GK, Menzaghi F, Bontempi B, Suto C, Siegel R, Akong M et al. The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 1998; 62: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  308. Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX et al. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer's disease. Biol Psychiatry 2001; 49: 279–288.

    Article  CAS  PubMed  Google Scholar 

  309. Albuquerque EX, Santos MD, Alkondon M, Pereira EF, Maelicke A . Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease. Alzheimer Dis Assoc Disord 2001; 15(Suppl 1): S19–S25.

    Article  CAS  PubMed  Google Scholar 

  310. Maelicke A . Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer's disease. Dement Geriatr Cogn Disord 2000; 11(Suppl 1): 11–18.

    Article  CAS  PubMed  Google Scholar 

  311. Coyle J, Kershaw P . Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer's disease. Biol Psychiatry 2001; 49: 289–299.

    Article  CAS  PubMed  Google Scholar 

  312. Allen TB, McEvoy JP . Galantamine for treatment-resistant schizophrenia. Am J Psychiatry 2002; 159: 1244–1245.

    Article  PubMed  Google Scholar 

  313. Rosse RB, Deutsch SI . Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin Neuropharmacol 2002; 25: 272–275.

    Article  PubMed  Google Scholar 

  314. MacEwan GW, Ehmann TS, Khanbhai I, Wrixon C . Donepezil in schizophrenia—is it helpful? An experimental design case study. Acta Psychiatr Scand 2001; 104: 469–472.

    Article  CAS  PubMed  Google Scholar 

  315. Howard AK, Thornton AE, Altman S, Honer WG . Donepezil for memory dysfunction in schizophrenia. J Psychopharmacol 2002; 16: 267–270.

    Article  PubMed  Google Scholar 

  316. Buchanan RW, Summerfelt A, Tek C, Gold J . An open-labeled trial of adjunctive donepezil for cognitive impairments in patients with schizophrenia. Schizophr Res 2003; 59: 29–33.

    Article  PubMed  Google Scholar 

  317. Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H et al. A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 2002; 51: 349–357.

    Article  CAS  PubMed  Google Scholar 

  318. Bymaster FP . Possible role of muscarinic receptor agonists as therapeutic agents for psychosis. In: Breier A, Tran PV, Herrera JM, Tollefson GD, Bymaster FP (eds). Current Issues in the Psychopharmacology of Schizophrenia. Lippincott Williams & Wilkins Healthcare, Philadelphia, 2001, pp 333–348.

    Google Scholar 

  319. Bymaster FP, Felder C, Ahmed S, McKinzie D . Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Target CNS Neurol Disord 2002; 1: 163–181.

    Article  CAS  Google Scholar 

  320. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54: 465–473.

    Article  CAS  PubMed  Google Scholar 

  321. Perry KW, Bymaster FP, Shannon HE, Rasmussen K, DeLapp NW, Zhang W et al. The muscarinic agonist xanomeline has antipsychotic-like activity in animals and in man. Schizophr Res 1999; 36: 117–118.

    Google Scholar 

  322. Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD et al. Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 2000; 42: 249–259.

    Article  CAS  PubMed  Google Scholar 

  323. Chopra GS, Smith JW . Psychotic reactions following cannabis use in East Indians. Arch Gen Psychiatry 1974; 30: 24–27.

    Article  CAS  PubMed  Google Scholar 

  324. Andreasson S, Allebeck P, Engstrom A, Rydberg U . Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 1987; 2: 1483–1486.

    CAS  PubMed  Google Scholar 

  325. Voruganti LN, Slomka P, Zabel P, Mattar A, Awad AG . Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res 2001; 107: 173–177.

    Article  CAS  PubMed  Google Scholar 

  326. Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D . Elevated endogenous cannabinoids in schizophrenia. Neuroreport 1999; 10: 1665–1669.

    Article  CAS  PubMed  Google Scholar 

  327. De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di M, V . Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis 2003; 2: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Emrich HM, Leweke FM, Schneider U . Towards a cannabinoid hypothesis of schizophrenia: cognitive impairments due to dysregulation of the endogenous cannabinoid system. Pharmacol Biochem Behav 1997; 56: 803–807.

    Article  CAS  PubMed  Google Scholar 

  329. Poncelet M, Barnouin MC, Breliere JC, Le Fur G, Soubrie P . Blockade of cannabinoid (CB1) receptors by 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils. Psychopharmacology 1999; 144: 144–150.

    Article  CAS  PubMed  Google Scholar 

  330. Alonso R, Voutsinos B, Fournier M, Labie C, Steinberg R, Souilhac J et al. Blockade of cannabinoid receptors by SR141716 selectively increases Fos expression in rat mesocorticolimbic areas via reduced dopamine D2 function. Neuroscience 1999; 91: 607–620.

    Article  CAS  PubMed  Google Scholar 

  331. Gueudet C, Santucci V, Soubrie P, Le Fur G . Blockade of neurokinin3 receptors antagonizes drug-induced population response and depolarization block of midbrain dopamine neurons in guinea pigs. Synapse 1999; 33: 71–79.

    Article  CAS  PubMed  Google Scholar 

  332. Kamali F . Osanetant Sanofi-Synthelabo. Curr Opin Investig Drugs 2001; 2: 950–956.

    CAS  PubMed  Google Scholar 

  333. Rein W, Arvanitis L . Antipsychotic effect of four different compounds—results of the metatrial. Eur Neuropsychopharmacol 2003; 13: S95.

    Article  Google Scholar 

  334. Nemeroff CB . Neurotensin: perchance an endogenous neuroleptic? Biol Psychiatry 1980; 15: 283–302.

    CAS  PubMed  Google Scholar 

  335. Binder EB, Kinkead B, Owens MJ, Nemeroff CB . The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 2001; 50: 856–872.

    Article  CAS  PubMed  Google Scholar 

  336. Kinkead B, Nemeroff CB . Neurotensin: an endogenous antipsychotic? Curr Opin Pharmacol 2002; 2: 99–103.

    Article  CAS  PubMed  Google Scholar 

  337. Vita N, Oury-Donat F, Chalon P, Guillemot M, Kaghad M, Bachy A et al. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur J Pharmacol 1998; 360: 265–272.

    Article  CAS  PubMed  Google Scholar 

  338. Feifel D, Reza TL, Wustrow DJ, Davis MD . Novel antipsychotic-like effects on prepulse inhibition of startle produced by a neurotensin agonist. J Pharmacol Exp Ther 1999; 288: 710–713.

    CAS  PubMed  Google Scholar 

  339. Shilling PD, Richelson E, Feifel D . The effects of systemic NT69L, a neurotensin agonist, on baseline and drug-disrupted prepulse inhibition. Behav Brain Res 2003; 143: 7–14.

    Article  CAS  PubMed  Google Scholar 

  340. Azzi M, Betancur C, Sillaber I, Spangel R, Rostene W, Berod A . Repeated administration of the neurotensin receptor antagonist SR 48692 differentially regulates mesocortical and mesolimbic dopaminergic systems. J Neurochem 1998; 71: 1158–1167.

    Article  CAS  PubMed  Google Scholar 

  341. Finberg JP, Youdim MB . Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours. Neuropharmacology 2002; 43: 1110–1118.

    Article  CAS  PubMed  Google Scholar 

  342. Perenyi A, Goswami U, Frecska E, Arato M, Bela A . L-deprenyl in treating negative symptoms of schizophrenia. Psychiatry Res 1992; 42: 189–191.

    Article  CAS  PubMed  Google Scholar 

  343. Bodkin JA, Cohen BM, Salomon MS, Cannon SE, Zornberg GL, Cole JO . Treatment of negative symptoms in schizophrenia and schizoaffective disorder by selegiline augmentation of antipsychotic medication. A pilot study examining the role of dopamine. J Nerv Ment Dis 1996; 184: 295–301.

    Article  CAS  PubMed  Google Scholar 

  344. Gupta S, Droney T, Kyser A, Keller P . Selegiline augmentation of antipsychotics for the treatment of negative symptoms in schizophrenia. Compr Psychiatry 1999; 40: 148–150.

    Article  CAS  PubMed  Google Scholar 

  345. Jungerman T, Rabinowitz D, Klein E . Deprenyl augmentation for treating negative symptoms of schizophrenia: a double-blind, controlled study. J Clin Psychopharmacol 1999; 19: 522–525.

    Article  CAS  PubMed  Google Scholar 

  346. Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M . Neuroprotection by propargylamines in Parkinson's disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 2002; 24: 675–682.

    Article  CAS  PubMed  Google Scholar 

  347. Naoi M, Maruyama W, Youdim MB, Yu P, Boulton AA . Anti-apoptotic function of propargylamine inhibitors of type-B monoamine oxidase. Inflammopharmacology 2003; 11: 175–181.

    Article  CAS  PubMed  Google Scholar 

  348. Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res 2003; 985: 113–126.

    Article  CAS  PubMed  Google Scholar 

  349. Schmidt CJ, Chapin DS, McCarthy SA, Fujiwara RA, Harms JF, Shrikhande A et al. The neurochemical and behavioral effects of papaverine in vivo suggest PDE10 inhibition is ‘antipsychotic’. Schizophr Res 2003; 60: 114.

    Article  Google Scholar 

  350. Noda Y, Yamada K, Furukawa H, Nabeshima T . Involvement of nitric oxide in phencyclidine-induced hyperlocomotion in mice. Eur J Pharmacol 1995; 286: 291–297.

    Article  CAS  PubMed  Google Scholar 

  351. Deutsch SI, Rosse RB, Paul SM, Tomasino V, Koetzner L, Morn CB et al. 7-Nitroindazole and methylene blue, inhibitors of neuronal nitric oxide synthase and NO-stimulated guanylate cyclase, block MK-801-elicited behaviors in mice. Neuropsychopharmacology 1996; 15: 37–43.

    Article  CAS  PubMed  Google Scholar 

  352. Johansson C, Jackson DM, Svensson L . Nitric oxide synthase inhibition blocks phencyclidine-induced behavioural effects on prepulse inhibition and locomotor activity in the rat. Psychopharmacology 1997; 131: 167–173.

    Article  CAS  PubMed  Google Scholar 

  353. Wiley JL, Golden KM, Bowen SE . Effects of modulation of nitric oxide on acoustic startle responding and prepulse inhibition in rats. Eur J Pharmacol 1997; 328: 125–130.

    Article  CAS  PubMed  Google Scholar 

  354. Wiley JL . Nitric oxide synthase inhibitors attenuate phencyclidine-induced disruption of prepulse inhibition. Neuropsychopharmacology 1998; 19: 86–94.

    Article  CAS  PubMed  Google Scholar 

  355. Deutsch SI, Rosse RB, Schwartz BL, Fay-McCarthy M, Rosenberg PB, Fearing K . Methylene blue adjuvant therapy of schizophrenia. Clin Neuropharmacol 1997; 20: 357–363.

    Article  CAS  PubMed  Google Scholar 

  356. Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T . Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities. Jpn J Pharmacol 1999; 81: 125–155.

    Article  CAS  PubMed  Google Scholar 

  357. Roberts E, Bologa L, Flood JF, Smith GE . Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice. Brain Res 1987; 406: 357–362.

    Article  CAS  PubMed  Google Scholar 

  358. Bologa L, Sharma J, Roberts E . Dehydroepiandrosterone and its sulfated derivative reduce neuronal death and enhance astrocytic differentiation in brain cell cultures. J Neurosci Res 1987; 17: 225–234.

    Article  CAS  PubMed  Google Scholar 

  359. Compagnone NA, Mellon SH . Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci USA 1998; 95: 4678–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Mao X, Barger SW . Neuroprotection by dehydroepiandrosterone-sulfate: role of an NFkappaB-like factor. Neuroreport 1998; 9: 759–763.

    Article  CAS  PubMed  Google Scholar 

  361. Bastianetto S, Ramassamy C, Poirier J, Quirion R . Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 1999; 66: 35–41.

    Article  CAS  PubMed  Google Scholar 

  362. Bergeron R, de Montigny C, Debonnel G . Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J Neurosci 1996; 16: 1193–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Debonnel G, Bergeron R, de Montigny C . Potentiation by dehydroepiandrosterone of the neuronal response to N-methyl-D-aspartate in the CA3 region of the rat dorsal hippocampus: an effect mediated via sigma receptors. J Endocrinol 1996; 150(Suppl): S33–S42.

    CAS  PubMed  Google Scholar 

  364. Flood JF, Smith GE, Roberts E . Dehydroepiandrosterone and its sulfate enhance memory retention in mice. Brain Res 1988; 447: 269–278.

    Article  CAS  PubMed  Google Scholar 

  365. Flood JF, Roberts E . Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Res 1988; 448: 178–181.

    Article  CAS  PubMed  Google Scholar 

  366. Flood JF, Morley JE, Roberts E . Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 1992; 89: 1567–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Reddy DS, Kulkarni SK . The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice. Brain Res 1998; 791: 108–116.

    Article  CAS  PubMed  Google Scholar 

  368. Maurice T, Junien JL, Privat A . Dehydroepiandrosterone sulfate attenuates dizocilpine-induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 1997; 83: 159–164.

    Article  CAS  PubMed  Google Scholar 

  369. Tourney G, Erb JL . Temporal variations in androgens and stress hormones in control and schizophrenic subjects. Biol Psychiatry 1979; 14: 395–404.

    CAS  PubMed  Google Scholar 

  370. Strauss EB, Sands DE, Robibson AM, Tindall WJ, Stevenson WAH . Use of dehydroisoandrosterone in psychiatric treatment: a preliminary survey. Br Med J 1952; 2: 64–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Sands DE . Further studies on endocrine treatment in adolescence and early adult life. J Ment Sci 1954; 100: 211–219.

    Article  CAS  PubMed  Google Scholar 

  372. Strauss EB, Stevenson WAH . Use of dehydroisoandrosterone in psychiatric practice. J Neurol Neurosurg Psychiatry 1955; 18: 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Strous RD, Maayan R, Lapidus R, Stryjer R, Lustig M, Kotler M et al. Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry 2003; 60: 133–141.

    Article  CAS  PubMed  Google Scholar 

  374. Vallee M, Purdy RH, Mayo W, Koob GF, Le Moal M . Neuroactive steroids: new biomarkers of cognitive aging. J Steroid Biochem Mol Biol 2003; 85: 329–335.

    Article  CAS  PubMed  Google Scholar 

  375. Vallee M, Mayo W, Le Moal M . Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Brain Res Rev 2001; 37: 301–312.

    Article  CAS  PubMed  Google Scholar 

  376. Zou LB, Yamada K, Sasa M, Nakata Y, Nabeshima T . Effects of sigma(1) receptor agonist SA4503 and neuroactive steroids on performance in a radial arm maze task in rats. Neuropharmacology 2000; 39: 1617–1627.

    Article  CAS  PubMed  Google Scholar 

  377. Noda Y, Kamei H, Kamei Y, Nagai T, Nishida M, Nabeshima T . Neurosteroids ameliorate conditioned fear stress: an association with sigma receptors. Neuropsychopharmacology 2000; 23: 276–284.

    Article  CAS  PubMed  Google Scholar 

  378. Lieberman JA . Is schizophrenia a neurodegenerative disorder?: a clinical and pathophysiological perspective. Biol Psychiatry 1999; 46: 729–739.

    Article  CAS  PubMed  Google Scholar 

  379. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 2001; 49: 487–499.

    Article  CAS  PubMed  Google Scholar 

  380. Kasai K, Shenton ME, Salisbury DF, Hirayasu Y, Lee CU, Ciszewski AA et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry 2003; 160: 156–164.

    Article  PubMed  PubMed Central  Google Scholar 

  381. Kasai K, Shenton ME, Salisbury DF, Hirayasu Y, Onitsuka T, Spencer MH et al. Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2003; 60: 766–775.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Thome J, Foley P, Riederer P . Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Transm 1998; 105: 85–100.

    Article  CAS  PubMed  Google Scholar 

  383. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  384. Stahl SM . When neurotrophic factors get on your nerves: therapy for neurodegenerative disorders. J Clin Psychiatry 1998; 59: 277–278.

    Article  CAS  PubMed  Google Scholar 

  385. Basile VS, Masellis M, Ozdemir V, Meltzer HY, Macciardi FM, Kennedy JL . Application of pharmacogenetics to schizophrenia: Emerging insights from studies of clozapine response and tardive dyskinesia. In: Breier A, Tran PV, Herrera JM, Tollefson GD, Bymaster FP (eds). Current Issues in the Psychopharmacology of Schizophrenia. Lippincott Williams & Wilkins Healthcare, Philadelphia, 2001, pp 85–110.

    Google Scholar 

  386. Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D, Sodhi M et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–1616.

    Article  CAS  PubMed  Google Scholar 

  387. Shastry BS . Schizophrenia: a genetic perspective (review). Int J Mol Med 2002; 9: 207–212.

    CAS  PubMed  Google Scholar 

  388. Arranz MJ, Kerwin RW . Advances in the pharmacogenetic prediction of antipsychotic response. Toxicology 2003; 192: 33–35.

    Article  CAS  PubMed  Google Scholar 

  389. Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome L, McEvoy J et al. Cozapine, olanzapine, risperidone, and haloperidol in patiens with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 2002; 159: 255–262.

    Article  PubMed  Google Scholar 

  390. Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM et al. The National Institute of Mental Health Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) Project: Schizophrenia trial design and protocol development. Schizophrenia Bull 2003; 29: 15–31.

    Article  Google Scholar 

  391. Mamo D, Kapur S, Shammi CM, Papatheodorou G, Mann S, Therrien F et al. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry 2004; 161: 818–825.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the UNC Schizophrenia Research Center, an NIMH Silvio O. Conte Center for the Neuroscience of Mental Disorders (MH064065)(JL), and the Foundation of Hope of Raleigh North Carolina (JL, GD). We thank Mr Kenji Seo and Ms Yoshiko Suzuki for preparing some references. No support was provided by any pharmaceutical company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, S., Duncan, G., Marx, C. et al. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10, 79–104 (2005). https://doi.org/10.1038/sj.mp.4001556

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001556

Keywords

This article is cited by

Search

Quick links