Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nucleoside transporters in chronic lymphocytic leukaemia

Abstract

Nucleoside derivatives have important therapeutic activity in chronic lymphocytic leukaemia (CLL). Experimental evidence indicates that in CLL cells most of these drugs induce apoptosis ex vivo, suggesting that programmed cell death is the mechanism of their therapeutic action, relying upon previous uptake and metabolic activation. Although defective apoptosis and poor metabolism often cause resistance to treatment, differential uptake and/or export of nucleosides and nucleotides may significantly modulate intracellular drug bioavailability and, consequently, responsiveness to therapy. Two gene families, SLC28 and SLC29, encode transporter proteins responsible for concentrative and equilibrative nucleoside uptake (CNT and ENT, respectively). Furthermore, selected members of the expanding ATP-binding cassette (ABC) protein family have recently been identified as putative efflux pumps for the phosphorylated forms of these nucleoside-derived drugs, ABCC11 (MRP8) being a good candidate to modulate cell sensitivity to fluoropyrimidines. Sensitivity of CLL cells to fludarabine has also been recently correlated with ENT-type transport function, suggesting that, besides the integrity of apoptotic pathways and appropriate intracellular metabolism, transport across the plasma membrane is also a relevant event during CLL treatment. As long as nucleoside transporter expression in leukaemia cells is not constitutive, the possibility of regulating nucleoside transporter function by pharmacological means may also contribute to improve therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rozman C, Montserrat E . Chronic lymphocytic leukemia. N Engl J Med 1995; 333: 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  2. Kipps TJ . Immunobiology of chronic lymphocytic leukemia. Curr Opin Hematol 2003; 10: 312–318.

    Article  PubMed  Google Scholar 

  3. Reed JC . Molecular biology of chronic lymphocytic leukemia. Semin Oncol 1998; 25: 11–18.

    CAS  PubMed  Google Scholar 

  4. Robak T, Kasznicki M . Alkylating agents and nucleoside analogues in the treatment of B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  5. Ross SR, McTavish D, Faulds D . Fludarabine. A review of its pharmacological properties and therapeutic potential in malignancy. Drugs 1993; 45: 737–759.

    Article  CAS  PubMed  Google Scholar 

  6. Bryson HM, Sorkin EM . Cladribine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in haematological malignancies. Drugs 1993; 46: 872–894.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson SA . Nucleoside analogues in the treatment of haematological malignancies. Expert Opin Pharmacother 2001; 2: 929–943.

    Article  CAS  PubMed  Google Scholar 

  8. Kipps TJ . Chronic lymphocytic leukemia. Curr Opin Hematol 2000; 7: 223–234.

    Article  CAS  PubMed  Google Scholar 

  9. Kefford RF, Fox RM . Deoxycoformycin-induced response in chronic lymphocytic leukaemia: deoxyadenosine toxicity in non-replicating lymphocytes. Br J Haematol 1982; 50: 627–636.

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto SS, Yu AL, Bleeker LC, Bakay B, Kung FH, Nyhan WL . Biochemical correlates of the differential sensitivity of subtypes of human leukemia to deoxyadenosine and deoxycoformycin. Blood 1982; 60: 1096–1102.

    CAS  PubMed  Google Scholar 

  11. Carson DA, Wasson DB, Esparza LM, Carrera CJ, Kipps TJ, Cottam HB . Oral antilymphocyte activity and induction of apoptosis by 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine. Proc Natl Acad Sci USA 1992; 89: 2970–2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB et al. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 2000; 96: 3537–3543.

    CAS  PubMed  Google Scholar 

  13. Perez-Galan P, Marzo I, Giraldo P, Rubio-Felix D, Lasierra P, Larrad L et al. Role of caspases and apoptosis-inducing factor (AIF) in cladribine-induced apoptosis of B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 2106–2114.

    Article  CAS  PubMed  Google Scholar 

  14. Robertson LE, Chubb S, Meyn RE, Story M, Ford R, Hittelman WN et al. Induction of apoptotic cell death in chronic lymphocytic leukemia by 2-chloro-2′-deoxyadenosine and 9-beta-D-arabinosyl-2-fluoroadenine. Blood 1993; 81: 143–150.

    CAS  PubMed  Google Scholar 

  15. Muller MR, Seiler F, Thomale J, Buschfort C, Rajewsky MF, Seeber S . Capacity of individual chronic lymphatic leukemia lymphocytes and leukemic blast cells for repair of O6-ethylguanine in DNA: relation to chemosensitivity in vitro and treatment outcome. Cancer Res 1994; 54: 4524–4531.

    CAS  PubMed  Google Scholar 

  16. Tosi P, Pellacani A, Zinzani PL, Magagnoli M, Visani G, Tura S . In vitro study of the combination gemcitabine+fludarabine on freshly isolated chronic lymphocytic leukemia cells. Haematologica 1999; 84: 794–798.

    CAS  PubMed  Google Scholar 

  17. Goodman MG, Wormsley SB, Spinosa JC, Piro LD . Loxoribine induces chronic lymphocytic leukemia B cells to traverse the cell cycle. Blood 1994; 84: 3457–3464.

    CAS  PubMed  Google Scholar 

  18. Campas C, Lopez JM, Santidrian AF, Barragan M, Bellosillo B, Colomer D, Gil J . Acadesine activates AMPK and induces apoptosis in B-cell chronic lymphocytic leukemia cells but not in T lymphocytes. Blood 2003; 101: 3674–3680.

    Article  CAS  PubMed  Google Scholar 

  19. Bellosillo B, Villamor N, Colomer D, Pons G, Montserrat E, Gil J . In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia. Blood 1999; 94: 2836–2843.

    CAS  PubMed  Google Scholar 

  20. Carrera CJ, Piro LD, Saven A, Beutler E, Terai C, Carson DA . 2-Chlorodeoxyadenosine chemotherapy triggers programmed cell death in normal and malignant lymphocytes. Adv Exp Med Biol 1991; 309A: 15–18.

    Article  CAS  PubMed  Google Scholar 

  21. Reed JC, Kitada S, Kim Y, Byrd J . Modulating apoptosis pathways in low-grade B-cell malignancies using biological response modifiers. Semin Oncol 2002; 29: 10–24.

    Article  CAS  PubMed  Google Scholar 

  22. Zinzani PL, Tosi P, Visani G, Martinelli G, Farabegoli P, Buzzi M et al. Apoptosis induction with three nucleoside analogs on freshly isolated B-chronic lymphocytic leukemia cells. Am J Hematol 1994; 47: 301–306.

    Article  CAS  PubMed  Google Scholar 

  23. Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB et al. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 2000; 96: 3537–3543.

    CAS  PubMed  Google Scholar 

  24. Leoni LM, Chao Q, Cottam HB, Genini D, Rosenbach M, Carrera CJ et al. Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc Natl Acad Sci USA 1998; 95: 9567–9571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sturm I, Bosanquet AG, Hermann S, Guner D, Dorken B, Daniel PT . Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ 2003; 10: 477–484.

    Article  CAS  PubMed  Google Scholar 

  26. Morabito F, Callea I, Console G, Stelitano C, Sculli G, Filangeri M et al. The in vitro cytotoxic effect of mitoxantrone in combination with fludarabine or pentostatin in B-cell chronic lymphocytic leukemia. Haematologica 1997; 82: 560–565.

    CAS  PubMed  Google Scholar 

  27. Callea I, Console G, Sculli G, Filangeri M, Messina G, Morabito F . Chlorambucil synergizes with purine analogs in inducing in vitro cytotoxicity in B-cell chronic lymphocytic leukemia. Haematologica 1998; 83: 756–757.

    CAS  PubMed  Google Scholar 

  28. Bosch F, Ferrer A, Lopez-Guillermo A, Gine E, Bellosillo B, Villamor N et al. Fludarabine, cyclophosphamide and mitoxantrone in the treatment of resistant or relapsed chronic lymphocytic leukaemia. Br J Haematol 2002; 119: 976–984.

    Article  CAS  PubMed  Google Scholar 

  29. Bromidge TJ, Turner DL, Howe DJ, Johnson SA, Rule SA . In vitro chemosensitivity of chronic lymphocytic leukaemia to purine analogues – correlation with clinical course. Leukemia 1998; 12: 1230–1235.

    Article  CAS  PubMed  Google Scholar 

  30. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet BE, Tigaud I, Gandhi V et al. Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br J Haematol 1999; 106: 78–85.

    Article  CAS  PubMed  Google Scholar 

  31. Mansson E, Spasokoukotskaja T, Sallstrom J, Eriksson S, Albertioni F . Molecular and biochemical mechanisms of fludarabine and cladribine resistance in a human promyelocytic cell line. Cancer Res 1999; 59: 5956–5963.

    CAS  PubMed  Google Scholar 

  32. Mansson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol 2003; 65: 237–247.

    Article  CAS  PubMed  Google Scholar 

  33. Jordheim L, Galmarini CM, Dumontet C . Drug resistance to cytotoxic nucleoside analogues. Curr Drug Targets 2003; 4: 443–460.

    Article  CAS  PubMed  Google Scholar 

  34. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998; 58: 4349–4357.

    CAS  PubMed  Google Scholar 

  35. Baldwin SA, Mackey JR, Cass CE, Young JD . Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 1999; 5: 216–224.

    Article  CAS  PubMed  Google Scholar 

  36. Pastor-Anglada M, Felipe A, Casado FJ . Transport and mode of action of nucleoside derivatives used in chemical and antiviral therapies. Trends Pharmacol Sci 1998; 19: 424–430.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Schaner ME, Thomassen S, Su SF, Piquette-Miller M, Giacomini KM . Functional and molecular characteristics of Na(+)-dependent nucleoside transporters. Pharmacol Res 1997; 14: 1524–1532.

    Article  CAS  Google Scholar 

  38. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD . The equilibrative nucleoside transporter family. SLC29. Pflugers Arch 2003, in press.

  39. Gray JH, Owen RP, Giacomini KM . The concentrative nucleoside transporter family. SLC28. Pflugers Arch 2003, in press.

  40. Dresser MJ, Gerstin KM, Gray AT, Loo DD, Giacomini KM . Electrophysiological analysis of the substrate selectivity of a sodium-coupled nucleoside transporter (rCNT1) expressed in Xenopus laevis oocytes. Drug Metab Dispos 2000; 28: 1135–1140.

    CAS  PubMed  Google Scholar 

  41. Lostao MP, Mata JF, Larrayoz IM, Inzillo SM, Casado FJ, Pastor-Anglada M . Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. FEBS Lett 2000; 481: 137–140.

    Article  CAS  PubMed  Google Scholar 

  42. Mackey JR, Yao SY, Smith KM, Karpinski E, Baldwin SA, Cass CE et al. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst 1999; 91: 1876–1881.

    Article  CAS  PubMed  Google Scholar 

  43. Mata JF, Garcia-Manteiga JM, Lostao MP, Fernandez-Veledo S, Guillen-Gomez E, Larrayoz IM et al. Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5[prime]-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug. Mol Pharmacol 2001; 59: 1542–1548.

    Article  CAS  PubMed  Google Scholar 

  44. Ward JL, Sherali A, Mo ZP, Tse CM . Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. J Biol Chem 2000; 275: 8375–8381.

    Article  CAS  PubMed  Google Scholar 

  45. Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 2001; 276: 2914–2927.

    Article  CAS  PubMed  Google Scholar 

  46. Lang TT, Selner M, Young JD, Cass CE . Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol Pharmacol 2001; 60: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  47. Soler C, Felipe A, Mata JF, Casado FJ, Celada A, Pastor-Anglada M . Regulation of nucleoside transport by lipopolysaccharide, phorbol esters, and tumor necrosis factor-alpha in human B-lymphocytes. J Biol Chem 1998; 273: 26939–26945.

    Article  CAS  PubMed  Google Scholar 

  48. Belt JA . Heterogeneity of nucleoside transport in mammalian cells. Two types of transport activity in L1210 and other cultured neoplastic cells. Mol Pharmacol. 1983; 24: 479–484.

    CAS  PubMed  Google Scholar 

  49. Belt JA, Noel LD . Isolation and characterization of a mutant of L1210 murine leukemia deficient in nitrobenzylthioinosine-insensitive nucleoside transport. J Biol Chem 1988; 263: 13819–13822.

    CAS  PubMed  Google Scholar 

  50. Crawford CR, Ng CY, Belt JA . Isolation and characterization of an L1210 cell line retaining the sodium-dependent carrier cif as its sole nucleoside transport activity. J Biol Chem 1990; 265: 13730–13734.

    CAS  PubMed  Google Scholar 

  51. Crawford CR, Ng CY, Ullman B, Belt JA . Identification and reconstitution of the nucleoside transporter of CEM human leukemia cells. Biochim Biophys Acta 1990; 1024: 289–297.

    Article  CAS  PubMed  Google Scholar 

  52. Crawford CR, Patel DH, Naeve C, Belt JA . Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. J Biol Chem 1998; 273: 5288–5293.

    Article  CAS  PubMed  Google Scholar 

  53. Molina-Arcas M, Bellosillo B, Casado FJ, Montserrat E, Gil J, Colomer D et al. Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood 2003; 101: 2328–2334.

    Article  CAS  PubMed  Google Scholar 

  54. Soler C, Garcia-Manteiga J, Valdes R, Xaus J, Comalada M, Casado FJ et al. Macrophages require different nucleoside transport systems for proliferation and activation. FASEB J 2001; 15: 1979–1988.

    Article  CAS  PubMed  Google Scholar 

  55. Soler C, Valdes R, Garcia-Manteiga J, Xaus J, Comalada M, Casado FJ et al. Lipopolysaccharide-induced apoptosis of macrophages determines the up-regulation of concentrative nucleoside transporters Cnt1 and Cnt2 through tumor necrosis factor-alpha-dependent and-independent mechanisms. J Biol Chem 2001; 276: 30043–30049.

    Article  CAS  PubMed  Google Scholar 

  56. Flanagan SA, Meckling-Gill KA . Characterization of a novel Na+-dependent, guanosine-specific, nitrobenzylthioinosine-sensitive transporter in acute promyelocytic leukemia cells. J Biol Chem 1997; 272: 18026–18032.

    Article  CAS  PubMed  Google Scholar 

  57. Soler C, Felipe A, Casado FJ, Celada A, Pastor-Anglada M . Nitric oxide regulates nucleoside transport in activated B lymphocytes. J Leukocyte Biol 2000; 67: 345–349.

    Article  CAS  PubMed  Google Scholar 

  58. Lee CW, Sokoloski JA, Sartorelli AC, Handschumacher RE . Differentiation of HL-60 cells by dimethylsulfoxide activates a Na(+)-dependent nucleoside transport system. In Vivo 1994; 8: 795–801.

    CAS  PubMed  Google Scholar 

  59. Frank DA, Mahajan S, Ritz J . Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat Med 1999; 5: 444–447.

    Article  CAS  PubMed  Google Scholar 

  60. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soler C, Felipe A, Garcia-Manteiga J, Serra M, Guillen-Gomez E, Casado FJ et al. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transducer and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways. Biochem J 2003; 375: 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petersen AJ, Brown RD, Gibson J, Pope B, Luo XF, Schutz L et al. Nucleoside transporters, bcl-2 and apoptosis in CLL cells exposed to nucleoside analogues in vitro. Eur J Haematol 1996; 56: 213–220.

    Article  CAS  PubMed  Google Scholar 

  63. Sundaram M, Yao SY, Ng AM, Cass CE, Baldwin SA, Young JD . Equilibrative nucleoside transporters: mapping regions of interaction for the substrate analogue nitrobenzylthioinosine (NBMPR) using rat chimeric proteins. Biochemistry 2001; 40: 8146–8151.

    Article  CAS  PubMed  Google Scholar 

  64. Vickers MF, Mani RS, Sundaram M, Hogue DL, Young JD, Baldwin SA et al. Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). Biochem J 1999; 339 (Part 1): 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Visser F, Vickers MF, Ng AM, Baldwin SA, Young JD, Cass CE . Mutation of residue 33 of human equilibrative nucleoside transporters 1 and 2 alters sensitivity to inhibition of transport by dilazep and dipyridamole. J Biol Chem 2002; 277: 395–401.

    Article  CAS  PubMed  Google Scholar 

  66. Beck FW, Al Katib AM, Ahmad I, Wall NR, Liu KZ, Mantsch HH et al. Bryostatin 1-induced modulation of nucleoside transporters and 2-chlorodeoxyadenosine influx in WSU-CLL cells. Int J Mol Med 2000; 5: 341–347.

    CAS  PubMed  Google Scholar 

  67. Battle TE, Frank DA . STAT1 mediates differentiation of chronic lymphocytic leukemia cells in response to bryostatin 1. Blood 2003.

  68. Mohammad RM, Beck FW, Katato K, Hamdy N, Wall N, Al Katib A . Potentiation of 2-chlorodeoxyadenosine activity by bryostatin 1 in the resistant chronic lymphocytic leukemia cell line (WSU-CLL): association with increased ratios of dCK/5′-NT and Bax/Bcl-2. Biol Chem 1998; 379: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  69. Mohammad RM, Limvarapuss C, Hamdy N, Dutcher BS, Beck FW, Wall NR et al. Treatment of a de novo fludarabine resistant-CLL xenograft model with bryostatin 1 followed by fludarabine. Int J Oncol 1999; 14: 945–950.

    CAS  PubMed  Google Scholar 

  70. Vrana JA, Wang Z, Rao AS, Tang L, Chen JH, Kramer LB et al. Induction of apoptosis and differentiation by fludarabine in human leukemia cells (U937): interactions with the macrocyclic lactone bryostatin 1. Leukemia 1999; 13: 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  71. Ali S, Aranha O, Li Y, Pettit GR, Sarkar FH, Philip PA . Sensitization of human breast cancer cells to gemcitabine by the protein kinase C modulator bryostatin 1. Cancer Chemother Pharmacol 2003; 52: 235–246.

    Article  CAS  PubMed  Google Scholar 

  72. Varterasian ML, Mohammad RM, Shurafa MS, Hulburd K, Pemberton PA, Rodriguez DH et al. Phase II trial of bryostatin 1 in patients with relapsed low-grade non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Clin Cancer Res 2000; 6: 825–828.

    CAS  PubMed  Google Scholar 

  73. Cragg LH, Andreeff M, Feldman E, Roberts J, Murgo A, Winning M et al. Phase I trial and correlative laboratory studies of bryostatin 1 (NSC 339555) and high-dose 1-B-D-arabinofuranosylcytosine in patients with refractory acute leukemia. Clin Cancer Res 2002; 8: 2123–2133.

    CAS  PubMed  Google Scholar 

  74. Gandhi V, Estey E, Du M, Nowak B, Keating MJ, Plunkett W . Modulation of the cellular metabolism of cytarabine and fludarabine by granulocyte-colony-stimulating factor during therapy of acute myelogenous leukemia. Clin Cancer Res 1995; 1: 169–178.

    CAS  PubMed  Google Scholar 

  75. Huang M, Wang Y, Cogut SB, Mitchell BS, Graves LM . Inhibition of nucleoside transport by protein kinase inhibitors. J Pharmacol Exp Ther 2003; 304: 753–760.

    Article  CAS  PubMed  Google Scholar 

  76. Alessi-Severini S, Gati WP, Belch AR, Paterson AR . Intracellular pharmacokinetics of 2-chlorodeoxyadenosine in leukemia cells from patients with chronic lymphocytic leukemia. Leukemia 1995; 9: 1674–1679.

    CAS  PubMed  Google Scholar 

  77. Wright AM, Gati WP, Paterson AR . Enhancement of retention and cytotoxicity of 2-chlorodeoxyadenosine in cultured human leukemic lymphoblasts by nitrobenzylthioinosine, an inhibitor of equilibrative nucleoside transport. Leukemia 2000; 14: 52–60.

    Article  CAS  PubMed  Google Scholar 

  78. Cass CE, King KM, Montano JT, Janowska-Wieczorek A . A comparison of the abilities of nitrobenzylthioinosine, dilazep, and dipyridamole to protect human hematopoietic cells from 7-deazaadenosine (tubercidin). Cancer Res 1992; 52: 5879–5886.

    CAS  PubMed  Google Scholar 

  79. Lang TT, Selner M, Young JD, Cass CE . Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol Pharmacol 2001; 60: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  80. Reiman T, Graham KA, Wong J, Belch AR, Coupland R, Young J et al. Mechanisms of resistance to nucleoside analogue chemotherapy in mantle cell lymphoma: a molecular case study. Leukemia 2002; 16: 1886–1887.

    Article  CAS  PubMed  Google Scholar 

  81. Stam RW, den Boer ML, Meijerink JP, Ebus ME, Peters GJ, Noordhuis P et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003; 101: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  82. Gati WP, Paterson AR, Belch AR, Chlumecky V, Larratt LM, Mant MJ et al. Es nucleoside transporter content of acute leukemia cells: role in cell sensitivity to cytarabine (araC). Leukemia Lymphoma 1998; 32: 45–54.

    Article  CAS  PubMed  Google Scholar 

  83. Bosanquet AG, Sturm I, Wieder T, Essmann F, Bosanquet MI, Head DJ et al. Bax expression correlates with cellular drug sensitivity to doxorubicin, cyclophosphamide and chlorambucil but not fludarabine, cladribine or corticosteroids in B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  84. Borst P, Elferink RO . Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.

    Article  CAS  PubMed  Google Scholar 

  85. Grey MR, Burgess R, Fisher A, Yin JA . Effect on cell kill of addition of multidrug resistance modifiers cyclosporin A and PSC 833 to cytotoxic agents in chronic lymphocytic leukaemia. Leukemia Res 1999; 23: 29–35.

    Article  CAS  Google Scholar 

  86. Nooter K, Westerman AM, Flens MJ, Zaman GJ, Scheper RJ, van Wingerden KE et al. Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin Cancer Res 1995; 1: 1301–1310.

    CAS  PubMed  Google Scholar 

  87. Borst P, Evers R, Kool M, Wijnholds J . A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  88. Scheffer GL, Kool M, Heijn M, de Haas M, Pijnenborg AC, Wijnholds J et al. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res 2000; 60: 5269–5277.

    CAS  PubMed  Google Scholar 

  89. Sandusky G . Expression of MRP5 in normal human tissues and tumors using tissue microarrays. Proc Am Assoc Cancer Res 2002; 43: 3873.

    Google Scholar 

  90. Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV et al. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5: 1048–1051.

    Article  CAS  PubMed  Google Scholar 

  91. Lee K, Klein-Szanto AJ, Kruh GD . Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J Natl Cancer Inst 2000; 92: 1934–1940.

    Article  CAS  PubMed  Google Scholar 

  92. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG . The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002; 13: 595–603.

    CAS  PubMed  Google Scholar 

  93. Jedlitschky G, Burchell B, Keppler D . The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275: 30069–30074.

    Article  CAS  PubMed  Google Scholar 

  94. Wijnholds J, Mol CA, van Deemter L, de Haas M, Scheffer GL, Baas F et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci USA 2000; 97: 7476–7481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen ZS, Lee K, Kruh GD . Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276: 33747–33754.

    Article  CAS  PubMed  Google Scholar 

  96. Wielinga PR, Reid G, Challa EE, van dH I, van Deemter L, de Haas M et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol 2002; 62: 1321–1331.

    Article  CAS  PubMed  Google Scholar 

  97. Davidson JD, Liandong M, Iverson PW, Lesoon A, Jin S, Horwitz L et al. Human multi-drug resistance protein 5 (MRP5) confers resistance to gemcitabine. Proc Am Assoc Cancer Res 2002; 43: 3868.

    Google Scholar 

  98. Reid G, Wielinga P, Zelcer N, de Haas M, van Deemter L, Wijnholds J et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 2003; 63: 1094–1103.

    Article  CAS  PubMed  Google Scholar 

  99. Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278: 29509–29514.

    Article  PubMed  Google Scholar 

  100. Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD . Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol 1997; 272: C707–C714.

    Article  CAS  PubMed  Google Scholar 

  101. Chandrasena G, Giltay R, Patil SD, Bakken A, Unadkat JD . Functional expression of human intestinal Na+-dependent and Na+-independent nucleoside transporters in Xenopus laevis oocytes. Biochem Pharmacol 1997; 53: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  102. Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD . Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol 1998; 15: 203–211.

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Su SF, Dresser MJ, Schaner ME, Washington CB, Giacomini KM . Na(+)-dependent purine nucleoside transporter from human kidney: cloning and functional characterization. Am J Physiol 1997; 273: F1058–F1065.

    CAS  PubMed  Google Scholar 

  104. Galmarini CM, Mackey JR, Dumontet C . Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002; 3: 415–424.

    Article  CAS  PubMed  Google Scholar 

  105. Gerstin KM, Dresser MJ, Giacomini KM . Specificity of human and rat orthologs of the concentrative nucleoside transporter, SPNT. Am J Physiol Renal Physiol 2002; 283: F344–F349.

    Article  CAS  PubMed  Google Scholar 

  106. Schaner ME, Wang J, Zhang L, Su SF, Gerstin KM, Giacomini KM . Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system. J Pharmacol Exp Ther 1999; 289: 1487–1491.

    CAS  PubMed  Google Scholar 

  107. Avery TL, Rehg JE, Lumm WC, Harwood FC, Santana VM, Blakley RL . Biochemical pharmacology of 2-chlorodeoxyadenosine in malignant human hematopoietic cell lines and therapeutic effects of 2-bromodeoxyadenosine in drug combinations in mice. Cancer Res 1989; 49: 4972–4978.

    CAS  PubMed  Google Scholar 

  108. Gati WP, Paterson AR, Larratt LM, Turner AR, Belch AR . Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular es nucleoside transporter site content measured by flow cytometry with SAENTA-fluorescein. Blood 1997; 90: 346–353.

    CAS  PubMed  Google Scholar 

  109. Jamieson GP, Snook MB, Bradley TR, Bertoncello I, Wiley JS . Transport and metabolism of 1-beta-D-arabinofuranosylcytosine in human ovarian adenocarcinoma cells. Cancer Res 1989; 49: 309–313.

    CAS  PubMed  Google Scholar 

  110. Adachi M, Sampath J, Lan LB, Sun D, Hargrove P, Flatley R et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem 2002; 277: 38998–39004.

    Article  CAS  PubMed  Google Scholar 

  111. Bera TK, Lee S, Salvatore G, Lee B, Pastan I . MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med 2001; 7: 509–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yabuuchi H, Shimizu H, Takayanagi S, Ishikawa T . Multiple splicing variants of two new human ATP-binding cassette transporters, ABCC11 and ABCC12. Biochem Biophys Res Commun 2001; 288: 933–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Pastor-Anglada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor-Anglada, M., Molina-Arcas, M., Casado, F. et al. Nucleoside transporters in chronic lymphocytic leukaemia. Leukemia 18, 385–393 (2004). https://doi.org/10.1038/sj.leu.2403271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403271

Keywords

This article is cited by

Search

Quick links