Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memory and cognition in schizophrenia

Abstract

Episodic memory deficits are consistently documented as a core aspect of cognitive dysfunction in schizophrenia patients, present from the onset of the illness and strongly associated with functional disability. Over the past decade, research using approaches from experimental cognitive neuroscience revealed disproportionate episodic memory impairments in schizophrenia (Sz) under high cognitive demand relational encoding conditions and relatively unimpaired performance under item-specific encoding conditions. These specific deficits in component processes of episodic memory reflect impaired activation and connectivity within specific elements of frontal-medial temporal lobe circuits, with a central role for the dorsolateral prefrontal cortex (DLPFC), relatively intact function of ventrolateral prefrontal cortex and variable results in the hippocampus. We propose that memory deficits can be understood within the broader context of cognitive deficits in Sz, where impaired DLPFC-related cognitive control has a broad impact across multiple cognitive domains. The therapeutic implications of these findings are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Jo Ellen Wilson, Matthew F. Mart, … E. Wesley Ely

References

  1. Bora E, Yucel M, Pantelis C. Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophr Bull. 2010;36:36–42.

    PubMed  Google Scholar 

  2. Keefe RS. Should cognitive impairment be included in the diagnostic criteria for schizophrenia? World Psychiatry. 2008;7:22–28.

    PubMed  PubMed Central  Google Scholar 

  3. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry. 2013;70:1107–12.

    PubMed  Google Scholar 

  4. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology. 1998;12:426–45.

    CAS  PubMed  Google Scholar 

  5. Goldberg TE, Weinberger DR. Effects of neuroleptic medications on the cognition of patients with schizophrenia: a review of recent studies. J Clin Psychiatry. 1996;57:62–65.

    CAS  PubMed  Google Scholar 

  6. Rushe TM, Woodruff PW, Murray RM, Morris RG. Episodic memory and learning in patients with chronic schizophrenia. Schizophr Res. 1999;35:85–96.

    CAS  PubMed  Google Scholar 

  7. Hoff AL, Riordan H, O’Donnell DW, Morris L, DeLisi LE. Neuropsychological functioning of first-episode schizophreniform patients. Am J Psychiatry. 1992;149:898–903.

    CAS  PubMed  Google Scholar 

  8. Aleman A, Hijman R, de Haan EH, Kahn RS. Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry. 1999;156:1358–66.

    CAS  PubMed  Google Scholar 

  9. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153:321–30.

    CAS  PubMed  Google Scholar 

  10. Ragland JD, Cools R, Frank M, Pizzagalli DA, Preston A, Ranganath C, et al. CNTRICS final task selection: long-term memory. Schizophr Bull. 2009;35:197–212.

    PubMed  Google Scholar 

  11. Murdock BB Jr. The serial position effect of free recall. J Exp Psychol. 1962;64:482–8.

    Google Scholar 

  12. Deese J, Kaufman RA. Serial effects in recall of unorganized and sequentially organized verbal material. J Exp Psychol. 1957;54:180–7.

    CAS  PubMed  Google Scholar 

  13. Craik FIM, Lockhart RS. Levels of processing: a framework for memory research. J Verbal Learn Verbal Behav. 1972;11:671–84.

    Google Scholar 

  14. Bousfield WA. The occurrence of clustering in the recall of randomly arranged associates. J General Psychol. 1953;49:229–40.

    Google Scholar 

  15. Tulving E. Subjective organization in free recall of “unrelated” words. Psychol Rev. 1962;69:344–54.

    CAS  PubMed  Google Scholar 

  16. Ragland JD, Moelter ST, McGrath C, Hill SK, Gur RE, Bilker WB, et al. Levels-of-processing effect on word recognition in schizophrenia. Biol Psychiatry. 2003;54:1154–61.

    PubMed  PubMed Central  Google Scholar 

  17. Koh SD, Peterson RA. Encoding orientation and the remembering of schizophrenic young adults. J Abnorm Psychol. 1978;87:303–13.

    CAS  PubMed  Google Scholar 

  18. Bonner-Jackson A, Haut K, Csernansky JG, Barch DM. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biol Psychiatry. 2005;58:47–55.

    PubMed  PubMed Central  Google Scholar 

  19. Guimond S, Hawco C, Lepage M. Prefrontal activity and impaired memory encoding strategies in schizophrenia. J Psychiatr Res. 2017;91:64–73.

    PubMed  Google Scholar 

  20. Brebion G, Amador X, Smith MJ, Gorman JM. Mechanisms underlying memory impairment in schizophrenia. Psychol Med. 1997;27:383–93.

    CAS  PubMed  Google Scholar 

  21. Murray LJ, Ranganath C. The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J Neurosci. 2007;27:5515–22.

    CAS  PubMed  Google Scholar 

  22. Lockhart RS, Murdock BB. Memory and the theory of signal detection. Psychol Bull. 1970;74:100–9.

    Google Scholar 

  23. Banks WP. Signal detection theory and human memory. Psychol Bull. 1970;74:81–99.

    Google Scholar 

  24. Kintsch W. Memory and decision aspects of recognition learning. Psychol Rev. 1967;74:496–504.

    CAS  PubMed  Google Scholar 

  25. Macmillan N, Creelman CD. Response bias: characteristics of detection theory, threshold theory, and “nonparametric” indexes. Psychol Bull. 1990;107:401–13.

    Google Scholar 

  26. Yonelinas AP. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Mem Cogn. 1994;20:1341–54.

    CAS  PubMed  Google Scholar 

  27. Yonelinas AP, Dobbins I, Szymanski MD, Dhaliwal HS, King L. Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Conscious Cogn. 1996;5:418–41.

    CAS  PubMed  Google Scholar 

  28. Ragland JD, Ranganath C, Barch DM, Gold JM, Haley B, MacDonald AW 3rd, et al. Relational and Item-Specific Encoding (RISE): task development and psychometric characteristics. Schizophr Bull. 2012;38:114–24.

    PubMed  Google Scholar 

  29. Owoso A, Carter CS, Gold JM, MacDonald AW 3rd, Ragland JD, Silverstein SM, et al. Cognition in schizophrenia and schizo-affective disorder: impairments that are more similar than different. Psychol Med. 2013;43:2535–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ragland JD, Blumenfeld RS, Ramsay IS, Yonelinas A, Yoon J, Solomon M, et al. Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. NeuroImage. 2012;59:1719–26.

    PubMed  Google Scholar 

  31. Libby LA, Yonelinas AP, Ranganath C, Ragland JD. Recollection and familiarity in schizophrenia: a quantitative review. Biol Psychiatry. 2013;73:944–50.

    PubMed  Google Scholar 

  32. Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. 2007;11:379–86.

    PubMed  Google Scholar 

  33. Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. 2007;30:123–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weiss AP, Heckers S. Neuroimaging of declarative memory in schizophrenia. Scand J Psychol. 2001;42:239–50.

    CAS  PubMed  Google Scholar 

  35. Preston AR, Eichenbaum H. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol. 2013;23:R764–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Barch DM, Csernansky JG, Conturo T, Snyder AZ. Working and long-term memory deficits in schizophrenia: is there a common prefrontal mechanism? J Abnorm Psychol. 2002;111:478–94.

    PubMed  Google Scholar 

  37. Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry. 2009;166:863–74.

    PubMed  PubMed Central  Google Scholar 

  38. Ragland JD, Gur RC, Valdez JN, Loughead J, Elliott M, Kohler C, et al. Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition. Am J Psychiatry. 2005;162:1840–8.

    PubMed  PubMed Central  Google Scholar 

  39. Jessen F, Scheef L, Germeshausen L, Tawo Y, Kockler M, Kuhn KU, et al. Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry. 2003;160:1305–12.

    PubMed  Google Scholar 

  40. Ragland JD, Gur RC, Valdez J, Turetsky BI, Elliott M, Kohler C, et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry. 2004;161:1004–15.

    PubMed  PubMed Central  Google Scholar 

  41. Rasetti R, Mattay VS, White MG, Sambataro F, Podell JE, Zoltick B, et al. Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry. 2014;71:236–47.

    PubMed  Google Scholar 

  42. Pirnia T, Woods RP, Hamilton LS, Lyden H, Joshi SH, Asarnow RF, et al. Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophr Res. 2015;161:357–66.

    PubMed  Google Scholar 

  43. Ragland JD, Ranganath C, Harms MP, Barch DM, Gold JM, Layher E, et al. Functional and neuroanatomic specificity of episodic memory dysfunction in schizophrenia: a functional magnetic resonance imaging study of the relational and item-specific encoding task. JAMA Psychiatry. 2015;72:909–16.

    PubMed  PubMed Central  Google Scholar 

  44. Lepage M, Montoya A, Pelletier M, Achim AM, Menear M, Lal S. Associative memory encoding and recognition in schizophrenia: an event-related fMRI study. Biol Psychiatry. 2006;60:1215–23.

    PubMed  Google Scholar 

  45. Ragland JD, Ranganath C, Phillips J, Boudewyn MA, Kring AM, Lesh TA. et al. Cognitive control of episodic memory in schizophrenia: differential role of dorsolateral and ventrolateral prefrontal cortex. Front Hum Neurosci. 2015;9:604

    PubMed  PubMed Central  Google Scholar 

  46. Wolf RC, Vasic N, Hose A, Spitzer M, Walter H. Changes over time in frontotemporal activation during a working memory task in patients with schizophrenia. Schizophr Res. 2007;91:141–50.

    PubMed  Google Scholar 

  47. Heckers S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus. 2001;11:520–8.

    CAS  PubMed  Google Scholar 

  48. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1:318–23.

    CAS  PubMed  Google Scholar 

  49. Fletcher P. The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci. 1998;1:266–7.

    CAS  PubMed  Google Scholar 

  50. Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry: J Ment Sci. 2005;187:500–9.

    Google Scholar 

  51. Bauman MD, Ragland JD, Schumann CM. Feeling and remembering: effects of psychosis on the structure and function of the amygdala and hippocampus In: Carol A Tamminga EII, Ulrich Reininghaus, Jim van Os, editors. Psychosis: Transdiagnostic Conceptualizations and Implications for Treatment, in press. (Oxford University Press, United Kingdom).

  52. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11.

    PubMed  Google Scholar 

  53. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch General Psychiatry. 2009;66:938–46.

    Google Scholar 

  54. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a pathogenic driver. Neuron. 2013;78:81–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci. 2011;12:585–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramos JM. Long-term spatial memory in rats with hippocampal lesions. Eur J Neurosci. 2000;12:3375–84.

    CAS  PubMed  Google Scholar 

  57. Ramos JM. Hippocampal damage impairs long-term spatial memory in rats: comparison between electrolytic and neurotoxic lesions. Physiol Behav. 2008;93:1078–85.

    CAS  PubMed  Google Scholar 

  58. Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent hippocampus. Learn Mem. 2010;17:5–11.

    PubMed  PubMed Central  Google Scholar 

  59. Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdottir HN, Stackman RW Jr. The rodent hippocampus is essential for nonspatial object memory. Curr Biol. 2013;23:1685–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Small SA, Nava AS, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Circuit mechanisms underlying memory encoding and retrieval in the long axis of the hippocampal formation. Nat Neurosci. 2001;4:442–9.

    CAS  PubMed  Google Scholar 

  61. Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T, et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev. 2004;28:273–83.

    CAS  PubMed  Google Scholar 

  62. Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ragland, J. D., Layher, E., Hannula, D. E., Niendam, T. A., Lesh, T. A., Solomon, M., Carter, C. S. & Ranganath, C. Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes. NeuroImage: Clinical 2017;13:82–88.

    CAS  Google Scholar 

  64. Keefe RS, Harvey PD. Cognitive impairment in schizophrenia. Handb Exp Pharmacol . 2012;213:11–37.

    CAS  Google Scholar 

  65. Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry. 2006;67:e12.

    PubMed  Google Scholar 

  66. Keefe RSE, Fox KH, Harvey PD, Cucchiaro J, Siu C, Loebel A. Characteristics of the MATRICS Consensus Cognitive Battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophr Res. 2011;125:161–8.

    PubMed  Google Scholar 

  67. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18:643–62.

    Google Scholar 

  68. Carter CS, Robertson LC, Nordahl TE. Abnormal processing of irrelevant information in chronic schizophrenia: selective enhancement of Stroop facilitation. Psychiatry Res. 1992;41:137–46.

    CAS  PubMed  Google Scholar 

  69. Carter CS, Mintun M, Cohen JD. Interference and facilitation effects during selective attention: an H215O PET study of Stroop task performance. NeuroImage. 1995;2:264–72.

    CAS  PubMed  Google Scholar 

  70. Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [O-15]H2O PET study during single-trial Stroop task performance. Am J Psychiatry. 1997;154:1670–5.

    CAS  PubMed  Google Scholar 

  71. Kerns JG, Cohen JD, MacDonald AW, Johnson MK, Stenger VA, Aizenstein H, et al. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry. 2005;162:1833–9.

    PubMed  Google Scholar 

  72. Riccio CA, Reynolds CR, Lowe P, Moore JJ. The continuous performance test: a window on the neural substrates for attention? Arch Clin Neuropsychol. 2002;17:235–72.

    PubMed  Google Scholar 

  73. Borgaro S, Pogge DL, DeLuca VA, Bilginer L, Stokes J, Harvey PD. Convergence of different versions of the continuous performance test: clinical and scientific implications. J Clin Exp Neuropsychol. 2003;25:283–92.

    PubMed  Google Scholar 

  74. Addington J, Addington D. Attentional vulnerability indicators in schizophrenia and bipolar disorder. Schizophr Res. 1997;23:197–204.

    CAS  PubMed  Google Scholar 

  75. Buchanan RW, Strauss ME, Breier A, Kirkpatrick B, Carpenter WT Jr. Attentional impairments in deficit and nondeficit forms of schizophrenia. Am J Psychiatry. 1997;154:363–70.

    CAS  PubMed  Google Scholar 

  76. Sponheim SR, McGuire KA, Stanwyck JJ. Neural anomalies during sustained attention in first-degree biological relatives of schizophrenia patients. Biol Psychiatry. 2006;60:242–52.

    PubMed  Google Scholar 

  77. Nuechterlein K, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces rapid sensitivity decrement over time. Science. 1983;220:327–9.

    CAS  PubMed  Google Scholar 

  78. Volz HP, Gaser C, Häger F, Rzanny R, Pönisch J, Mentzel HJ, et al. Decreased frontal activation in schizophrenics during stimulation with the Continuous Performance Test - a functional magnetic resonance imaging study. Eur Psychiatry. 1999;14:17–24.

    CAS  PubMed  Google Scholar 

  79. Honey GD, Pomarol-Clotet E, Corlett PR, Honey RA, McKenna PJ, Bullmore ET, et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain. 2005;128:2597–611.

    PubMed  Google Scholar 

  80. Liddle PF, Laurens KR, Kiehl KA, Ngan ET. Abnormal function of the brain system supporting motivated attention in medicated patients with schizophrenia: an fMRI study. Psychol Med. 2006;36:1097–108.

    PubMed  Google Scholar 

  81. Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M, et al. Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiatry. 2007;164:442–9.

    PubMed  Google Scholar 

  82. Eyler LT, Olsen RK, Jeste DV, Brown GG. Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Res. 2004;130:245–57.

    PubMed  Google Scholar 

  83. Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A. Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch General Psychiatry. 2005;62:254–62.

    Google Scholar 

  84. Roth M, Hong LE, McMahon RP, Fuller RL. Comparison of the effectiveness of Conners’ CPT and the CPT-identical pairs at distinguishing between smokers and nonsmokers with schizophrenia. Schizophr Res. 2013;148:29–33.

    PubMed  PubMed Central  Google Scholar 

  85. Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, et al. Cognitive functioning in prodromal psychosis: a meta-analysis. Arch General Psychiatry. 2012;69:562–71.

    Google Scholar 

  86. White T, Schmidt M, Karatekin C. Verbal and visuospatial working memory development and deficits in children and adolescents with schizophrenia. Early Interv Psychiatry. 2010;4:305–13.

    PubMed  Google Scholar 

  87. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23:315–36.

    PubMed  Google Scholar 

  88. Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry. 2005;10:229. 287-98

    PubMed  Google Scholar 

  89. Deserno L, Sterzer P, Wustenberg T, Heinz A, Schlagenhauf F. Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci. 2012;32:12–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001;158:1105–13.

    CAS  PubMed  Google Scholar 

  91. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000;10:1078–92.

    CAS  PubMed  Google Scholar 

  92. Cannon TD, Glahn DC, Kim J, Van Erp TG, Karlsgodt K, Cohen MS, et al. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch General Psychiatry. 2005;62:1071–80.

    Google Scholar 

  93. Barch DM, Csernansky JG. Abnormal parietal cortex activation during working memory in schizophrenia: verbal phonological coding disturbances versus domain-general executive dysfunction. Am J Psychiatry. 2007;164:1090–8.

    PubMed  Google Scholar 

  94. Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev. 1992;99:45–77.

    CAS  PubMed  Google Scholar 

  95. Posner MI, Snyder CRR. Attention and cognitive control. In: Solso RL, editor. Information Processing and Cognition: Loyola Symposium. New Jersey: Erlbaum Associates; 1975.

    Google Scholar 

  96. Koechlin E, Summerfield C. An information theoretical approach to prefrontal executive function. Trends Cogn Sci. 2007;11:229–35.

    PubMed  Google Scholar 

  97. Goulas A, Uylings HBM, Stiers P. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cereb Cortex. 2014;24:1178–94.

    PubMed  Google Scholar 

  98. Badre D, D’Esposito M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci. 2007;19:2082–99.

    PubMed  Google Scholar 

  99. Ridderinkhof KR, van den Wildenberg WP, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56:129–40.

    PubMed  Google Scholar 

  100. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch General Psychiatry. 2009;66:811–22.

    Google Scholar 

  101. Ray KL, Lesh TA, Howell AM, Salo TP, Ragland JD, MacDonald AW, et al. Functional network changes and cognitive control in schizophrenia. NeuroImage Clin. 2017;15:161–70.

    PubMed  PubMed Central  Google Scholar 

  102. Kerns JG, Cohen JD, MacDonald AW 3rd, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004;303:1023–6.

    CAS  PubMed  Google Scholar 

  103. Braver TS, Cohen JD, Barch DM. The role of prefrontal cortex in normal and disordered cognitive control: a cognitive neuroscience perspective. In: Stuss DT, Knight RT, editors. Principles of Frontal Lobe Function. Oxford: Oxford University Press; 2002. p. 428–48.

    Google Scholar 

  104. Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD, et al. Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin. 2013;2:590–9.

    PubMed  PubMed Central  Google Scholar 

  105. Yoon JH, Minzenberg MJ, Ursu S, Ryan Walter BS, Wendelken C, Ragland JD, et al. Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry. 2008;165:1006–14.

    PubMed  PubMed Central  Google Scholar 

  106. MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ, et al. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry. 2005;162:475–84.

    PubMed  Google Scholar 

  107. Fornito A, Yoon J, Zalesky A, Bullmore ET, Carter CS. General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biol Psychiatry. 2011;70:64–72.

    PubMed  PubMed Central  Google Scholar 

  108. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36:316–38.

    PubMed  Google Scholar 

  109. Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C. Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci. 2011;23:257–65.

    PubMed  PubMed Central  Google Scholar 

  110. Anderson MC, Hanslmayr S. Neural mechanisms of motivated forgetting. Trends Cogn Sci. 2014;18:279–92.

    PubMed  PubMed Central  Google Scholar 

  111. Fawcett JM, Taylor TL. Forgetting is effortful: evidence from reaction time probes in an item-method directed forgetting task. Mem & Cogn. 2008;36:1168–81.

    Google Scholar 

  112. Wylie GR, Foxe JJ, Taylor TL. Forgetting as an active process: an fMRI investigation of item-method–directed forgetting. Cereb Cortex. 2008;18:670–82.

    PubMed  Google Scholar 

  113. Nowicka A, Marchewka A, Jednoróg K, Tacikowski P, Brechmann A. Forgetting of emotional information is hard: an fMRI study of directed forgetting. Cereb Cortex. 2011;21:539–49.

    PubMed  Google Scholar 

  114. Conway MA, Fthenaki A. Disruption of inhibitory control of memory following lesions to the frontal and temporal Lobes. Cortex. 2003;39:667–86.

    PubMed  Google Scholar 

  115. Racsmány M, Conway MA, Garab EA, Cimmer C, Janka Z, Kurimay T, et al. Disrupted memory inhibition in schizophrenia. Schizophr Res. 2008;101:218–24.

    PubMed  Google Scholar 

  116. Müller U, Ullsperger M, Hammerstein E, Sachweh S, Becker T. Directed forgetting in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2005;255:251–7.

    PubMed  Google Scholar 

  117. Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. 2007;11:379–86.

    PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank our colleague Vanessa Zarubin for her diligent proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Y. Guo or C. S. Carter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J.Y., Ragland, J.D. & Carter, C.S. Memory and cognition in schizophrenia. Mol Psychiatry 24, 633–642 (2019). https://doi.org/10.1038/s41380-018-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0231-1

This article is cited by

Search

Quick links