Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis

Abstract

Human cancers often exhibit attenuated microRNA (miRNA) biogenesis and global underexpression of miRNAs; thus, targeting the miRNA biogenesis pathway represents a novel strategy for cancer therapy. Here, we report that miR-26a enhances miRNA biogenesis, which acts as a common mechanism partially accounting for miR-26a function in diverse cancers including melanoma, prostate and liver cancer. miR-26a was broadly reduced in multiple cancers, and overexpression of miR-26a significantly suppressed tumor growth and metastasis both in vitro and in vivo, including melanoma, prostate and liver cancers. Notably, miR-26a overexpression was accompanied by global upregulation of miRNAs, especially let-7, and let-7 expression was concordant with miR-26a expression in cancer cell lines, xenograft tumors and normal human tissues, underscoring their biological relevance. We showed that miR-26a directly targeted Lin28B and Zcchc11—two critical repressors of let-7 maturation. Furthermore, we have demonstrated that Zcchc11 promoted tumor growth and metastasis, and it was prominently overexpressed in human cancers. Our findings thus provide a novel mechanism by which a miRNA acts as a modulator of miRNA biogenesis. These results also define a role of the miR-26a and Zcchc11 in tumorigenesis and metastasis and have implications to develop new strategies for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Farazi TA, Spitzer JI, Morozov P, Tuschl T . miRNAs in human cancer. J Pathol 2011; 223: 102–115.

    Article  CAS  Google Scholar 

  2. Iorio MV, Croce CM . MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–159.

    Article  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  4. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  Google Scholar 

  6. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 2700–2704.

    Article  CAS  Google Scholar 

  7. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  Google Scholar 

  8. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18: 303–315.

    Article  CAS  Google Scholar 

  9. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 2009; 41: 365–370.

    Article  CAS  Google Scholar 

  10. Ravi A, Gurtan AM, Kumar MS, Bhutkar A, Chin C, Lu V et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell 2012; 21: 848–855.

    Article  CAS  Google Scholar 

  11. Newman MA, Hammond SM . Emerging paradigms of regulated microRNA processing. Genes Dev 2010; 24: 1086–1092.

    Article  CAS  Google Scholar 

  12. van Kouwenhove M, Kedde M, Agami R . MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011; 11: 644–656.

    Article  CAS  Google Scholar 

  13. Kasinski AL, Slack FJ . Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11: 849–864.

    Article  CAS  Google Scholar 

  14. Lujambio A, Lowe SW . The microcosmos of cancer. Nature 2012; 482: 347–355.

    Article  CAS  Google Scholar 

  15. Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 2012; 335: 1195–1200.

    Article  CAS  Google Scholar 

  16. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843–848.

    Article  CAS  Google Scholar 

  17. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147: 81–94.

    Article  CAS  Google Scholar 

  18. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  Google Scholar 

  19. Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S et al. Blockade of miR-150 maturation by MLL-Fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012; 22: 524–535.

    Article  CAS  Google Scholar 

  20. Newman MA, Hammond SM . Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis. Int J Biochem Cell Biol 2010; 42: 1330–1333.

    Article  CAS  Google Scholar 

  21. Viswanathan SR, Daley GQ . Lin28: amicroRNA regulator with a macro role. Cell 2010; 140: 445–449.

    Article  CAS  Google Scholar 

  22. Thornton JE, Gregory RI . How does Lin28 let-7 control development and disease? Trends Cell Biol 2012; 22: 474–482.

    Article  CAS  Google Scholar 

  23. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  24. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.

    Article  CAS  Google Scholar 

  25. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  Google Scholar 

  26. Hammond SM, HMGA2 Sharpless NE . microRNAs, and stem cell aging. Cell 2008; 135: 1013–1016.

    Article  CAS  Google Scholar 

  27. Guo L, Chen C, Shi M, Wang F, Chen X, Diao D et al. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 2013; 32: 5272–5282.

    Article  CAS  Google Scholar 

  28. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138: 696–708.

    Article  CAS  Google Scholar 

  29. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN . Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 2008; 32: 276–284.

    Article  CAS  Google Scholar 

  30. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.

    Article  CAS  Google Scholar 

  31. Hagan JP, Piskounova E, Gregory RI . Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16: 1021–1025.

    Article  CAS  Google Scholar 

  32. Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R et al. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 2010; 52: 2148–2157.

    Article  CAS  Google Scholar 

  33. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  Google Scholar 

  34. Talmadge JE . Models of metastasis in drug discovery. Methods Mol Biol 2010; 602: 215–233.

    Article  CAS  Google Scholar 

  35. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  36. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2011; 147: 1066–1079.

    Article  CAS  Google Scholar 

  37. Blahna MT, Jones MR, Quinton LJ, Matsuura KY, Mizgerd JP . Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. J Biol Chem 2011; 286: 42381–42389.

    Article  CAS  Google Scholar 

  38. King CE, Wang L, Winograd R, Madison BB, Mongroo PS, Johnstone CN et al. LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene 2011; 30: 4185–4193.

    Article  CAS  Google Scholar 

  39. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  Google Scholar 

  40. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009; 361: 1437–1447.

    Article  CAS  Google Scholar 

  41. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43: 673–678.

    Article  CAS  Google Scholar 

  42. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202–4212.

    Article  CAS  Google Scholar 

  43. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 2009; 28: 347–358.

    Article  CAS  Google Scholar 

  44. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Cheng N et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 2011; 30: 4500–4514.

    Article  CAS  Google Scholar 

  45. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM . Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 2005; 11: 1737–1744.

    Article  CAS  Google Scholar 

  46. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W . Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 2007; 67: 863–867.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Arthur Riggs and Rama Natarajan for reviewing the manuscript, Dr Kyle Sousa and other members of the Huang laboratory for their helpful discussions and Dr Keely Walker for editing the manuscript. This work was supported by the National Cancer Institute (P30 CA033572) and the American Cancer Society (RSG-11-132-01-CCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Meng, Z., Liang, W. et al. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33, 4296–4306 (2014). https://doi.org/10.1038/onc.2013.385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.385

Keywords

This article is cited by

Search

Quick links