Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation

Abstract

Claudin-2 is a unique member of the claudin family of transmembrane proteins, as its expression is restricted to the leaky epithelium in vivo and correlates with epithelial leakiness in vitro. However, recent evidence suggests potential functions of claudin-2 that are relevant to neoplastic transformation and growth. In accordance, here we report, on the basis of analysis of mRNA and protein expression using a total of 309 patient samples that claudin-2 expression is significantly increased in colorectal cancer and correlates with cancer progression. We also report similar increases in claudin-2 expression in inflammatory bowel disease-associated colorectal cancer. Most importantly, we demonstrate that the increased claudin-2 expression in colorectal cancer is causally associated with tumor growth as forced claudin-2 expression in colon cancer cells that do not express claudin-2 resulted in significant increases in cell proliferation, anchorage-independent growth and tumor growth in vivo. We further show that the colonic microenvironment regulates claudin-2 expression in a manner dependent on signaling through the EGF receptor (EGFR), a key regulator of colon tumorigenesis. In addition, claudin-2 expression is specifically decreased in the colon of waved-2 mice, naturally deficient in EGFR activation. Furthermore, genetic silencing of claudin-2 expression in Caco-2, a colon cancer cell line, prevents the EGF-induced increase in cell proliferation. Taken together, these results uncover a novel role for claudin-2 in promoting colon cancer, potentially via EGFR transactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amasheh M, Grotjohann I, Amasheh S, Fromm A, Söderholm JD, Zeitz M et al. (2009). Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines. Scand J Gastroenterol 44: 1226–1235.

    Article  CAS  PubMed  Google Scholar 

  • Angelow S, Schneeberger EE, Yu AS . (2007). Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J Membr Biol 215: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Ansfield F, Klotz J, Nealon T, Ramirez G, Minton J, Hill G et al. (1977). A phase III study comparing the clinical utility of four regimens of 5-fluorouracil: a preliminary report. Cancer 39: 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J . (1997). PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 3: 2099–2106.

    CAS  PubMed  Google Scholar 

  • Buchert M, Papin M, Bonnans C, Darido C, Raye WS, Garambois V et al. (2010). Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc Natl Acad Sci USA 107: 2628–2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K et al. (2010). Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 107: 4200–4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cereijido M, Contreras RG, Shoshani L . (2004). Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev 84: 1229–1262.

    Article  CAS  PubMed  Google Scholar 

  • Cutler NS, Graves-Deal R, LaFleur BJ, Gao Z, Boman BM, Whitehead RH et al. (2003). Stromal production of prostacyclin confers an antiapoptotic effect to colonic epithelial cells. Cancer Res 63: 1748–1751.

    CAS  PubMed  Google Scholar 

  • D'Incà R, Di Leo V, Corrao G, Martines D, D'Odorico A, Mestriner C et al. (1999). Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am J Gastroenterol 94: 2956–2960.

    Article  PubMed  Google Scholar 

  • Dahlhoff M, Horst D, Gerhard M, Kolligs FT, Wolf E, Schneider MR . (2008). Betacellulin stimulates growth of the mouse intestinal epithelium and increases adenoma multiplicity in Apc+/Min mice. FEBS Lett. 582: 2911–2915.

    Article  CAS  PubMed  Google Scholar 

  • Davies RJ, Joseph R, Asbun H, Sedwitz M . (1989). Detection of the cancer-prone colon, using transepithelial impedance analysis. Arch Surg 124: 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C et al. (2005). Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115: 1765–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaden JA, Abrams KR, Mayberry JF . (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48: 526–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escaffit F, Boudreau F, Beaulieu JF . (2005). Differential expression of claudin-2 along the human intestine: implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol 203: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Benitez D, Ruiz-Cabrera A, Flores-Maldonado C, Shoshani L, Cereijido M, Contreras RG . (2007). Control of tight junctional sealing: role of epidermal growth factor. Am J Physiol Renal Physiol 292: F828–F836.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S . (2001). Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into madin-darby canine kidney I cells. J Cell Biol 153: 263–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuse M, Tsukita S . (2006). Claudins in occluding junctions of humans and flies. Trends Cell Biol. 16: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Guillemot L, Citi S . (2006). Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA. Mol Biol Cell 17: 3569–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B et al. (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129: 550–564.

    Article  CAS  PubMed  Google Scholar 

  • Helmrath MA, Shin CE, Erwin CR, Warner BW . (1998). The EGF/EGF-receptor axis modulates enterocyte apoptosis during intestinal adaptation. J Surg Res 77: 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM . (2006). Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6: 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Kim EC, Zhu Y, Andersen V, Sciaky D, Cao HJ, Meekins H et al. (1998). Cytokine-mediated PGE2 expression in human colonic fibroblasts. Am J Physiol Cell Physiol 275: C988–C994.

    Article  CAS  Google Scholar 

  • Kinugasa T, Huo Q, Higashi D, Shibaguchi H, Kuroki M, Tanaka T et al. (2007). Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res 27: 3729–3734.

    CAS  PubMed  Google Scholar 

  • Kinugasa T, Sakaguchi T, Gu X, Reinecker HC . (2000). Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan M, Singh AB, Smith JJ, Sharma A, Chen X, Eschrich S et al. (2010). HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene 29: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Lal-Nag M, Morin P . (2009). The claudins. Genome Biol 10: 235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA et al. (1994). The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8: 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Mankertz J, Amasheh M, Krug SM, Fromm A, Amasheh S, Hillenbrand B et al. (2009). TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res 336: 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Mankertz J, Hillenbrand B, Tavalali S, Huber O, Fromm M, Schulzke JD . (2004). Functional crosstalk between Wnt signaling and Cdx-related transcriptional activation in the regulation of the claudin-2 promoter activity. Biochem Biophys Res Commun 314: 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Mima S, Takehara M, Takada H, Nishimura T, Hoshino T, Mizushima T . (2008). NSAIDs suppress the expression of claudin-2 to promote invasion activity of cancer cells. Carcinogenesis 29: 1994–2000.

    Article  CAS  PubMed  Google Scholar 

  • Mullin JM . (2004). Epithelial barriers, compartmentation, and cancer. Sci STKE 2004: pe2.

    CAS  PubMed  Google Scholar 

  • Mullin JM, McGinn MT . (1987). The phorbol ester, TPA, increases transepithelial epidermal growth factor flux. FEBS Lett. 221: 359–364.

    Article  CAS  PubMed  Google Scholar 

  • Mullin JM, O'Brien TG . (1986). Effects of tumor promoters on LLC-PK1 renal epithelial tight junctions and transepithelial fluxes. Am J Physiol Cell Physiol 251: C597–C602.

    Article  CAS  Google Scholar 

  • Mullin JM, Snock KV, Shurina RD, Noe J, George K, Misner L et al. (1992). Effects of acute vs. chronic phorbol ester exposure on transepithelial permeability and epithelial morphology. J Cell Physiol 152: 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS . (2002). Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8: 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Peter Y, Comellas A, Levantini E, Ingenito EP, Shapiro SD . (2009). Epidermal growth factor receptor and claudin-2 participate in A549 permeability and remodeling: implications for non-small cell lung cancer tumor colonization. Mol Carcinog 48: 488–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT et al. (2005). Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 85: 1139–1162.

    Article  CAS  PubMed  Google Scholar 

  • Rego RL, Foster NR, Smyrk TC, Le M, O'Connell MJ, Sargent DJ et al. (2009). Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer 102: 165–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Lamas M, Martin D, del Carmen Namorado M, Islas S, Luna J et al. (2002). The renal segmental distribution of claudins changes with development. Kidney Int 62: 476–487.

    Article  CAS  PubMed  Google Scholar 

  • Ridyard AE, Brown JK, Rhind SM, Else RW, Simpson JW, Miller HR . (2007). Apical junction complex protein expression in the canine colon: differential expression of claudin-2 in the colonic mucosa in dogs with idiopathic colitis. J Histochem Cytochem 55: 1049–1058.

    Article  CAS  PubMed  Google Scholar 

  • Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ et al. (2002). Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99: 1521–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC . (2002). Cloning of the human claudin-2 5′-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1α. J Biol Chem 277: 21361–21370.

    Article  CAS  PubMed  Google Scholar 

  • Shiou SR, Singh AB, Moorthy K, Datta PK, Washington MK, Beauchamp RD et al. (2007). Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res 67: 1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AB, Harris RC . (2004). Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepithelial resistance in Madin-Darby canine kidney cells. J Biol Chem 279: 3543–3552.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal. 17: 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Sugimoto K, Dhawan P, Harris RC . (2007). Juxtacrine activation of EGFR regulates claudin expression and increases transepithelial resistance. Am J Physiol Cell Physiol 293: C1660–C1668.

    Article  CAS  PubMed  Google Scholar 

  • Singh AB, Sugimoto K, Harris RC . (2007). Juxtacrine activation of epidermal growth factor (EGF) receptor by membrane-anchored heparin-binding EGF-like growth factor protects epithelial cells from anoikis while maintaining an epithelial phenotype. J Biol Chem 282: 32890–32901.

    Article  CAS  PubMed  Google Scholar 

  • Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM . (1999). Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20: 1425–1432.

    Article  CAS  PubMed  Google Scholar 

  • Takehara M, Nishimura T, Mima S, Hoshino T, Mizushima T . 2009. Effect of claudin expression on paracellular permeability, migration and invasion of colonic cancer cells. Biol Pharm Bull 32: 825–831.

    Article  CAS  PubMed  Google Scholar 

  • Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR . (2008). Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest 88: 1110–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabana T, Arimura Y, Tanaka H, Goto A, Hosokawa M, Nagaishi K et al. (2009). Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. J Pathol 218: 350–359.

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka T, Yan F, Cao H, Hobbs SS, Dise RS, Tong W et al. (2008). Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis. Proc Natl Acad Sci USA 105: 11772–11777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U et al. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56: 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Hua P, Lance P . (2003). Cyclooxygenase-2 expression and prostanoid biogenesis reflect clinical phenotype in human colorectal fibroblast strains. Cancer Res 63: 522–526.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by 5P50DK044757 and P30DK058404 Pilot projects (ABS) and by NIH grants CA119005, CA124977 (PD). We thank Dr Ambra Pozzi and Mingjian Shi for providing waved-2 mice and Dr Wael El-Rifai for providing 5-FU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B Singh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhawan, P., Ahmad, R., Chaturvedi, R. et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 30, 3234–3247 (2011). https://doi.org/10.1038/onc.2011.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.43

Keywords

This article is cited by

Search

Quick links