Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors

Abstract

Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that mediate fast synaptic transmission. Here functional pentameric assembly of truncated fragments comprising the ligand-binding N-terminal ectodomains and the first three transmembrane helices, M1–M3, of both the inhibitory glycine receptor (GlyR) α1 and the 5HT3A receptor subunits was found to be rescued by coexpressing the complementary fourth transmembrane helix, M4. Alanine scanning identified multiple aromatic residues in M1, M3 and M4 as key determinants of GlyR assembly. Homology modeling and molecular dynamics simulations revealed that these residues define an interhelical aromatic network, which we propose determines the geometry of M1–M4 tetrahelical packing such that nascent pLGIC subunits must adopt a closed fivefold symmetry. Because pLGIC ectodomains form random nonstoichiometric oligomers, proper pentameric assembly apparently depends on intersubunit interactions between extracellular domains and intrasubunit interactions between transmembrane segments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oligomeric structures of α1 GlyR truncation mutants.
Figure 2: Reconstitution of pentamer formation upon coexpression of N- and C-terminally truncated GlyR α1 subunit fragments.
Figure 3: Reconstitution of α1 GlyR and 5HT3A receptor function from complementary homotypic fragments.
Figure 4: Effect of single alanine substitutions in M4 on assembly, surface expression and function of the α1 GlyR.
Figure 5: Location of membrane-embedded aromatic residues crucial for homopentameric assembly of the α1 GlyR.

Similar content being viewed by others

References

  1. Liao, M.J., Huang, K.S. & Khorana, H.G. Regeneration of native bacteriorhodopsin structure from fragments. J. Biol. Chem. 259, 4200–4204 (1984).

    CAS  PubMed  Google Scholar 

  2. Popot, J.L., Gerchman, S.E. & Engelman, D.M. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. J. Mol. Biol. 198, 655–676 (1987).

    Article  CAS  Google Scholar 

  3. Mackenzie, K.R. Folding and stability of α-helical integral membrane proteins. Chem. Rev. 106, 1931–1977 (2006).

    Article  CAS  Google Scholar 

  4. Popot, J.L. & Engelman, D.M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  5. Popot, J.L. & Engelman, D.M. Helical membrane protein folding, stability, and evolution. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  Google Scholar 

  6. de Planque, M.R. & Killian, J.A. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20, 271–284 (2003).

    Article  CAS  Google Scholar 

  7. Eilers, M., Shekar, S.C., Shieh, T., Smith, S.O. & Fleming, P.J. Internal packing of helical membrane proteins. Proc. Natl. Acad. Sci. USA 97, 5796–5801 (2000).

    Article  CAS  Google Scholar 

  8. Liu, Y., Gerstein, M. & Engelman, D.M. Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc. Natl. Acad. Sci. USA 101, 3495–3497 (2004).

    Article  CAS  Google Scholar 

  9. Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581–589 (2005).

    Article  CAS  Google Scholar 

  10. Hildebrand, P.W. et al. Hydrogen-bonding and packing features of membrane proteins: functional implications. Biophys. J. 94, 1945–1953 (2008).

    Article  CAS  Google Scholar 

  11. Gimpelev, M., Forrest, L.R., Murray, D. & Honig, B. Helical packing patterns in membrane and soluble proteins. Biophys. J. 87, 4075–4086 (2004).

    Article  CAS  Google Scholar 

  12. Hildebrand, P.W., Rother, K., Goede, A., Preissner, R. & Frommel, C. Molecular packing and packing defects in helical membrane proteins. Biophys. J. 88, 1970–1977 (2005).

    Article  CAS  Google Scholar 

  13. Hall, Z.W. Recognition domains in assembly of oligomeric membrane proteins. Trends Cell Biol. 2, 66–68 (1992).

    Article  CAS  Google Scholar 

  14. Green, W.N. & Millar, N.S. Ion-channel assembly. Trends Neurosci. 18, 280–287 (1995).

    Article  CAS  Google Scholar 

  15. Gu, Y., Camacho, P., Gardner, P. & Hall, Z.W. Identification of two amino acid residues in the epsilon subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells. Neuron 6, 879–887 (1991).

    Article  CAS  Google Scholar 

  16. Chavez, R.A., Maloof, J., Beeson, D., Newsom-Davis, J. & Hall, Z.W. Subunit folding and αδ heterodimer formation in the assembly of the nicotinic acetylcholine receptor. Comparison of the mouse and human α subunits. J. Biol. Chem. 267, 23028–23034 (1992).

    CAS  PubMed  Google Scholar 

  17. Kuhse, J., Laube, B., Magalei, D. & Betz, H. Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 11, 1049–1056 (1993).

    Article  CAS  Google Scholar 

  18. Griffon, N. et al. Molecular determinants of glycine receptor subunit assembly. EMBO J. 18, 4711–4721 (1999).

    Article  CAS  Google Scholar 

  19. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998).

    Article  CAS  Google Scholar 

  20. Nicke, A., Rettinger, J., Mutschler, E. & Schmalzing, G. Blue native PAGE as a useful method for the analysis of the assembly of distinct combinations of nicotinic acetylcholine receptor subunits. J. Recept. Signal Transduct. Res. 19, 493–507 (1999).

    Article  CAS  Google Scholar 

  21. Büttner, C. et al. Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors. J. Biol. Chem. 276, 42978–42985 (2001).

    Article  Google Scholar 

  22. Sadtler, S. et al. A basic cluster determines topology of the cytoplasmic M3–M4 loop of the glycine receptor α1 subunit. J. Biol. Chem. 278, 16782–16790 (2003).

    Article  CAS  Google Scholar 

  23. Nicke, A., Thurau, H., Sadtler, S., Rettinger, J. & Schmalzing, G. Assembly of nicotinic α7 subunits in Xenopus oocytes is partially blocked at the tetramer level. FEBS Lett. 575, 52–58 (2004).

    Article  CAS  Google Scholar 

  24. Gendreau, S. et al. A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J. Biol. Chem. 279, 39505–39512 (2004).

    Article  CAS  Google Scholar 

  25. Detro-Dassen, S. et al. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J. Biol. Chem. 283, 4177–4188 (2008).

    Article  CAS  Google Scholar 

  26. Duckwitz, W., Hausmann, R., Aschrafi, A. & Schmalzing, G. P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J. Biol. Chem. 281, 39561–39572 (2006).

    Article  CAS  Google Scholar 

  27. Green, T., Stauffer, K.A. & Lummis, S.C. Expression of recombinant homo-oligomeric 5-hydroxytryptamine3 receptors provides new insights into their maturation and structure. J. Biol. Chem. 270, 6056–6061 (1995).

    Article  CAS  Google Scholar 

  28. Claudio, T. et al. Fibroblasts transfected with Torpedo acetylcholine receptor β-, γ-, and δ-subunit cDNAs express functional receptors when infected with a retroviral α recombinant. J. Cell Biol. 108, 2277–2290 (1989).

    Article  CAS  Google Scholar 

  29. Blount, P. & Merlie, J.P. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. J. Cell Biol. 111, 2613–2622 (1990).

    Article  CAS  Google Scholar 

  30. Buck, T.M., Wagner, J., Grund, S. & Skach, W.R. A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization. Nat. Struct. Mol. Biol. 14, 762–769 (2007).

    Article  CAS  Google Scholar 

  31. Schmidt, T.G., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

    Article  CAS  Google Scholar 

  32. Hilf, R.J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  Google Scholar 

  33. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  Google Scholar 

  34. Hilf, R.J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    Article  CAS  Google Scholar 

  35. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    Article  CAS  Google Scholar 

  36. McGaughey, G.B., Gagne, M. & Rappe, A.K. π-Stacking interactions. Alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998).

    Article  CAS  Google Scholar 

  37. Gurezka, R., Laage, R., Brosig, B. & Langosch, D. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J. Biol. Chem. 274, 9265–9270 (1999).

    Article  CAS  Google Scholar 

  38. Lemmon, M.A., Treutlein, H.R., Adams, P.D., Brunger, A.T. & Engelman, D.M. A dimerization motif for transmembrane α-helices. Nat. Struct. Biol. 1, 157–163 (1994).

    Article  CAS  Google Scholar 

  39. Rath, A. & Deber, C.M. Surface recognition elements of membrane protein oligomerization. Proteins 70, 786–793 (2008).

    Article  CAS  Google Scholar 

  40. Choma, C., Gratkowski, H., Lear, J.D. & Degrado, W.F. Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  41. Zhou, F.X., Cocco, M.J., Russ, W.P., Brunger, A.T. & Engelman, D.M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154–160 (2000).

    Article  CAS  Google Scholar 

  42. Burley, S.K. & Petsko, G.A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  Google Scholar 

  43. Gervasio, F.L., Chelli, R., Procacci, P. & Schettino, V. The nature of intermolecular interactions between aromatic amino acid residues. Proteins 48, 117–125 (2002).

    Article  CAS  Google Scholar 

  44. Ridder, A., Skupjen, P., Unterreitmeier, S. & Langosch, D. Tryptophan supports interaction of transmembrane helices. J. Mol. Biol. 354, 894–902 (2005).

    Article  CAS  Google Scholar 

  45. Johnson, R.M., Hecht, K. & Deber, C.M. Aromatic and cation-π interactions enhance helix-helix association in a membrane environment. Biochemistry 46, 9208–9214 (2007).

    Article  CAS  Google Scholar 

  46. Sal-Man, N., Gerber, D., Bloch, I. & Shai, Y. Specificity in transmembrane helix-helix interactions mediated by aromatic residues. J. Biol. Chem. 282, 19753–19761 (2007).

    Article  CAS  Google Scholar 

  47. Li, S.C. & Deber, C.M. A measure of helical propensity for amino acids in membrane environments. Nat. Struct. Biol. 1, 368–373 (1994).

    Article  CAS  Google Scholar 

  48. Nooren, I.M. & Thornton, J.M. Diversity of protein-protein interactions. EMBO J. 22, 3486–3492 (2003).

    Article  CAS  Google Scholar 

  49. Grudzinska, J. et al. The β subunit determines the ligand binding properties of synaptic glycine receptors. Neuron 45, 727–739 (2005).

    Article  CAS  Google Scholar 

  50. Gloor, S., Pongs, O. & Schmalzing, G. A vector for the synthesis of cRNAs encoding Myc epitope-tagged proteins in Xenopus laevis oocytes. Gene 160, 213–217 (1995).

    Article  CAS  Google Scholar 

  51. Becker, D. et al. The P2X7 carboxyl tail is a regulatory module of P2X7 receptor channel activity. J. Biol. Chem. 283, 25725–25734 (2008).

    Article  CAS  Google Scholar 

  52. Schägger, H., Cramer, W.A. & von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230 (1994).

    Article  Google Scholar 

  53. Schägger, H. & von Jagow, G. Tricine-sodium dodecycl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  Google Scholar 

  54. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  55. Eswar, N., Eramian, D., Webb, B., Shen, M.Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    Article  CAS  Google Scholar 

  56. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  57. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  58. Pettersen, E.F. et al. UCSF Chimera—visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  59. Morris, G.M. & Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 443, 365–382 (2008).

    Article  CAS  Google Scholar 

  60. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Braam for expert help in generating cDNA constructs, G. Drwal for electrophysiological recording and F. Pult for sharing with us the data of her M.D. work on C-terminal N-glycosylation. Supported by Deutsche Forschungsgemeinschaft (La1086/5-3; Schm536/4-3), Fonds der Chemischen Industrie (H.B.), the Hertie Foundation (B.L.), the Alexander von Humboldt Foundation (H.B., V.T.), Deutscher Akademischer Austauschdienst (D.K.) and the Russian Academy of Sciences grant “Molecular and Cell Biology” (V.T., D.K.).

Author information

Authors and Affiliations

Authors

Contributions

S.H. designed and generated DNA constructs and performed biochemical experiments; D.K. performed homology modeling and molecular dynamics simulations and analyzed the data; S.D.-D. synthesized cRNAs, generated DNA constructs and performed biochemical experiments; N.L. generated mutants and performed biochemical experiments; M.K. performed electrophysiological recordings; V.T. supervised homology modeling and analyzed data; H.B. designed experiments and wrote the paper; B.L. designed experiments, performed electrophysiological recordings, analyzed data and wrote the paper; G.S. designed constructs and biochemical experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Günther Schmalzing.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 2821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeger, S., Kuzmin, D., Detro-Dassen, S. et al. An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat Struct Mol Biol 17, 90–98 (2010). https://doi.org/10.1038/nsmb.1721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing