Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Neurobiology of Sleep: Genetics, cellular physiology and subcortical networks

Key Points

  • Over the past decade, technological advances in molecular biology and cellular neurophysiology have allowed us to construct a much more complete picture of the genetic events, cellular mechanisms and subcortical networks that underlie the neurobiology of sleep.

  • An interlocking positive–negative feedback mechanism that controls gene transcription in individual cells of the suprachiasmatic nucleus (SCN) of the hypothalamus is the molecular basis of circadian rhythmicity in mammals. This endogenous periodicity can be entrained to the ambient photoperiod by photons impinging on the circadian photopigment melanopsin in retinal ganglion cells. These cells use the neurotransmitter glutamate to convey this information to the SCN monosynaptically through the retinohypothalamic tract (RHT).

  • SCN cells output their intrinsic circadian rhythmicity by action potentials that impinge on adjacent nuclei of the anterior hypothalamus, including the paraventricular nucleus, the subparaventricular nucleus (SPZ), the dorsomedial nucleus (DMH) and the medial preoptic area, which, in turn, convey circadian rhythmicity to structures that control rhythmic physiological processes, such as sleep, temperature and endocrine output.

  • Feedback to the SCN circadian oscillator can occur by melatonin from the pineal gland, which reliably secretes this sleep-related hormone in response to polysynaptically conveyed signals from the SCN. In addition, other neuromodulatory systems, including the neurotransmitter acetylcholine, modulate the SCN's responsiveness to photic input from the RHT. The sensitivity of the circadian pacemaker to such modulation also shows temporal specificity: the SCN is responsive to particular modulatory signals only at specific times during the circadian day.

  • A key hypothalamic structure that receives circadian output from the SCN through the SPZ and the DMH is the GABA (γ-aminobutyric acid)-containing ventrolateral preoptic area (VLPO), which promotes non-REM (NREM) sleep. The VLPO might initiate sleep onset through its reciprocal inhibition of cholinergic, noradrenergic and serotonergic arousal systems in the brainstem, as well as histaminergic arousal systems of the posterior hypothalamus and cholinergic systems of the basal forebrain, all of which are modulated by the orexinergic arousal system of the lateral hypothalamus. All these arousal systems promote the activated brain states of waking, whereas the cholinergic system acts alone to promote the activated state of rapid eye movement (REM) sleep.

  • The VLPO is triggered to initiate sleep onset by both circadian input from the anterior hypothalamus and sleep–wake homeostatic information from endogenous chemical signals, such as adenosine, which accumulate in proportion to time spent awake. Circadian and homeostatic signals are integrated in diencephalic structures so as to initiate sleep with an adaptive timing.

  • Once sleep is initiated, an ultradian oscillator in the mesopontine junction controls the regular alternation of NREM and REM sleep. The executive control of this oscillator involves a reciprocal interaction between cholinergic REM-on and aminergic REM-off cell groups, whose influence on one another is mediated by interposed excitatory, inhibitory and autoregulatory circuits that involve GABA and glutamate, as well as serotonin, noradrenaline and acetylcholine.

  • Both the sleep–wake and REM–NREM oscillators give rise to regularly recurring changes in neuromodulation of the forebrain structures that mediate behaviour, consciousness and cognitive processes such as memory consolidation. The burgeoning literature detailing molecular-biological, cellular and neuromodulatory mechanisms indicates that sleep research has entered a new era.

Abstract

To appreciate the neural underpinnings of sleep, it is important to view this universal mammalian behaviour at multiple levels of its biological organization. Molecularly, the circadian rhythm of sleep involves interlocking positive- and negative-feedback mechanisms of circadian genes and their protein products in cells of the suprachiasmatic nucleus that are entrained to ambient conditions by light. Circadian information is integrated with information on homeostatic sleep need in nuclei of the anterior hypothalamus. These nuclei interact with arousal systems in the posterior hypothalamus, basal forebrain and brainstem to control sleep onset. During sleep, an ultradian oscillator in the mesopontine junction controls the regular alternation of rapid eye movement (REM) and non-REM sleep. Sleep cycles are accompanied by neuromodulatory influences on forebrain structures that influence behaviour, consciousness and cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain regions and regulatory circuits involved in sleep.
Figure 2: The molecular control of circadian rhythms.
Figure 3: The reciprocal-interaction model of REM–NREM alternation.
Figure 4: Schematic representation of the process of REM sleep generation.
Figure 5: Sleep–wake control systems of the subthalamic diencephalon and their links to input from the circadian clock and to ascending arousal systems of the brainstem.
Figure 6: Transmission of circadian information from the circadian oscillator to hypothalamic systems that control circadian rhythms.

Similar content being viewed by others

References

  1. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676 (2001).An excellent review of mammalian circadian biology at the level of the SCN's intranuclear genetic and intracellular biology, and of the output of the SCN to cells of the anterior hypothalamus and peripheral oscillators.

    Article  CAS  PubMed  Google Scholar 

  3. Rechtschaffen, A. & Bergmann, B. M. Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25, 18–24 (2002).

    Article  PubMed  Google Scholar 

  4. Hobson, J. A. & Pace-Schott, E. F. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Rev. Neurosci. (in the press).

  5. Kryger, M. H., Roth, T. & Dement, W. C. (eds) Principles and Practice of Sleep Medicine (Saunders, Philadelphia, 2000).

    Google Scholar 

  6. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Albrecht, U. Regulation of mammalian circadian clock genes. J. Appl. Physiol. 92, 1348–1355 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Czeisler, C. A. et al. Stability, precision, and near 24 hour period of the human circadian pacemaker. Science 284, 2177–2181 (1999).An important paper that used a forced-desynchrony protocol to show that the endogenous human circadian period is closer to exactly 24 h than was previously believed.

    Article  CAS  PubMed  Google Scholar 

  9. Gillette, M. U. & Tischkau, S. A. Suprachiasmatic nucleus: the brain's clock. Recent Prog. Horm. Res. 54, 33–59 (1999).A comprehensive review of the molecular mechanisms of signalling between the SCN, its photic inputs (which are transduced to a chemical signal in the retina) and the neuromodulatory systems that modify its ability to be entrained by such photic input.

    CAS  PubMed  Google Scholar 

  10. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).A study showing that SCN neurons that are removed from this pacemaker nucleus continue to express circadian rhythms in vitro.

    Article  CAS  PubMed  Google Scholar 

  11. Ralph, M. R., Foster, R. G. & Davis, F. C. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).This transplantation study definitively showed that the SCN of the anterior hypothalamus contains the mammalian circadian pacemaker.

    Article  CAS  PubMed  Google Scholar 

  12. Lowrey, P. L., Shimomura, K., Antoch, M. P., Yamazaki, S. & Zemenides, P. D. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–491 (2000).This study established that the tau locus encodes the protein casein kinase 1ɛ, which is the homologue of the Drosophila gene double-time ; its function in the mammalian circadian clock is to phosphorylate the protein products of Per genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vielhaber, E., Eide, E., Rivers, A, Gao, Z. H. & Virshup, D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Iɛ. Mol. Cell. Biol. 20, 4888–4899 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vitanera, M. H., King, D. P., Chang, A. M., Kornhauser, J. M. & Lowrey, P. l. Mutagenesis and mapping of a mouse gene Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  Google Scholar 

  15. King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D. & Tanaka, M. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).The first study to clone a gene element of the mammalian circadian clock, the gene Clock.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reid, K. J. et al. Familial advanced sleep phase syndrome. Arch. Neurol. 58, 1089–1094 (2001).The first study to identify a familial pattern of inheritance (in a particular family) for a circadian disorder of humans — advanced sleep-phase syndrome.

    Article  CAS  PubMed  Google Scholar 

  17. Colwell, C. S., Foster, R. G. & Menaker, M. NMDA receptor agonists block the effects of light on circadian behavior in the mouse. Brain Res. 554, 105–110 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M. U. & Rea, M. A. Nitric oxide synthase inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692, 137–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Gillette, M. U. et al. Role of the M1 receptor in regulating circadian rhythms. Life Sci. 68, 2467–2472 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. MacArthur, A. J., Hunt, A. E. & Gillette, M. U. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase at dusk and dawn. Endocrinology 138, 627–634 (1997).

    Article  Google Scholar 

  22. Hannibal, J. Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock. Ann. NY Acad. Sci. 865, 197–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, J. M. et al. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Tischkau, S. A., Gallman, E. A., Buchanan, G. F. & Gillette, M. U. Differential cAMP gating of glutamatergic signal regulates long-term state changes in the suprachiasmatic circadian clock. J. Neurosci. 20, 7830–7837 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Field, M. D., Maywood, E. S., O'Brien, J. A., Weaver, D. R. & Reppert, S. M. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, R. Y. & Speh, J. C. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598–603 (1993).

    Google Scholar 

  27. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Miche, S. & Colwell, C. S. Cellular communication and coupling within the suprachiasmatic nucleus. Chronobiol. Int. 18, 579–600 (2001).

    Article  Google Scholar 

  29. Yagita, K., Tamanini, F., van Der Horst, G. T. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).References 30 and 31 are two landmark papers that identified a new activating arousal system in the hypothalamus, that of orexin, in an animal model of narcolepsy that had a defect in the gene for its receptor.

    Article  CAS  PubMed  Google Scholar 

  32. Kilduff, T. S. & Peyron, C. The hypocretin/orexin ligand–receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Sutcliffe, J. G. & De Lecea, L. The hypocretins: setting the arousal threshold. Nature Rev. Neurosci. 3, 339–349 (2002).

    Article  CAS  Google Scholar 

  34. Cirelli, C. & Tononi, G. On the functional significance of c-fos induction during the sleep/waking cycle. Sleep 23, 453–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Tononi, G. & Cirelli, C. Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacology 25, S28–S35 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cirelli, C. & Tononi, G. Differences in gene expression between sleep and waking as revealed by mRNA differential display. Brain Res. Mol. Brain Res. 56, 293–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep–waking cycle. Brain Res. 885, 303–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Cirelli, C., Pompeiano, M. & Tononi, G. Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 274, 1211–1215 (1996).A pioneering study of state-dependent gene expression that describes the dependency of such expression during waking on a state-dependent neuromodulatory system — that of noradrenaline, which is itself associated with waking.

    Article  CAS  PubMed  Google Scholar 

  39. Cirelli, C. & Tononi, G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J. Neurosci. 20, 9187–9194 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peigneux, P., Laureys, S., Delbeuck, X. & Maquet, P. Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport 12, A111–A124 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Vertes, R. P. & Eastman, K. E. The case against memory consolidation in REM sleep. Behav. Brain Sci. 23, 867–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Graves, L., Pack, A. & Abel, T. Sleep and memory: a molecular perspective. Trends Neurosci. 24, 237–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro, S., Goyal, V., Mello, C. V. & Pavlides, C. Brain gene expression during REM sleep depends on prior waking experience. Learn. Mem. 6, 500–508 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hobson, J. A., McCarley, R. W. & Wyzinki, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55–58 (1975).A presentation of the reciprocal-interaction model of sleep-state control, in which the regular alternation of REM and NREM results from an interaction in the mesopontine brainstem between aminergic REM-on and cholinergic REM-off cell populations (see also reference 45).

    Article  CAS  PubMed  Google Scholar 

  45. McCarley, R. W. & Hobson, J. A. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189, 58–60 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. Hobson, J. A., Pace-Schott, E. F. & Stickgold, R. Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav. Brain Sci. 23, 793–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Pace-Schott, E. F. & Hobson, J. A. in American College of Neuropsychopharmacology, Fifth Generation of Progress (eds Charney, D., Coyle, J., Davis, K. & Nemeroff, C.) 1859–1877 (Lippincott, Williams and Wilkins, Philadelphia, Pennsylvania, 2002).

    Google Scholar 

  48. Leonard, C. S. & Llinas, R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 59, 309–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Sakai, K. & Koyama, Y. Are there cholinergic and non-cholinergic paradoxical sleep-on neurons in the pons? Neuroreport 7, 2449–2453 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Semba, K. in Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (eds Lydic, R. & Baghdoyan, H. A.) 161–180 (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  51. Steriade, M., Datta, S., Pare, D., Oakson, G. & Curro-Dossi, R. Neuronal activities in brainstem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gervasoni, D. et al. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J. Neurosci. 20, 4217–4225 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luppi, P.-H., Peyron, C. & Rampon, C. in Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (eds Lydic, R. & Baghdoyan, H.) 195–211 (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  54. Maloney, K. J., Mainville, L. & Jones, B. E. Differential c-fos expression in cholinergic, aminergic and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J. Neurosci. 19, 3057–3072 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nitz, D. & Siegel, J. M. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78, 795–801 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Nitz, D. & Siegel, J. M. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am. J. Physiol. 273, R451–R455 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fay, R. & Kubin, L. 5-HT2A receptor-like protein is present in small neurons located in rat mesopontine cholinergic nuclei, but absent from cholinergic neurons. Neurosci. Lett. 314, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Blanco-Centurion, C. A. & Salin-Pascual, R. J. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation. Brain Res. 923, 128–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Vazquez, J. & Baghdoyan, H. A. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R598–R601 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Jones, B. E. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 134–154 (Saunders, Philadelphia, 2000).

    Google Scholar 

  61. Kubin, L. Carbachol models of REM sleep: recent developments and new directions. Arch. Ital. Biol. 139, 37–51 (2001).

    Google Scholar 

  62. Sakai, K., Crochet, S. & Onoe, H. Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch. Ital. Biol. 139, 93–107 (2001).

    CAS  PubMed  Google Scholar 

  63. Capece, M. C., Baghdoyan, H. A. & Lydic, R. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 123–141 (Marcel Dekker, New York, 1999).

    Google Scholar 

  64. Luppi, P.-H. et al. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 107–122 (Marcel Dekker, New York, 1999).

    Google Scholar 

  65. Jacobs, B. L. & Fornal, C. A. in Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (eds Lydic, R. & Baghdoyan, H. A.) (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  66. Hobson, J. A. & Steriade, M. in Handbook of Physiology — The Nervous System Vol. IV (ed. Bloom, F. E.) 701–823 (American Physiological Society, Bethesda, Maryland, 1986).

    Google Scholar 

  67. Steriade, M. & McCarley, R. W. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).

    Book  Google Scholar 

  68. Datta, S. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 91–106 (Marcel Dekker, New York, 1999).

    Google Scholar 

  69. Varga, V., Sik, A., Freund, T. F. & Kocsis, B. GABAB receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 109, 119–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Vertes, R. & Kocsis, B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81, 893–926 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Lai, Y. Y. & Siegel, J. M. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 69–70 (Marcel Dekker, New York, 1999).

    Google Scholar 

  72. Lydic, R. & Baghdoyan, H. A. (eds) Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  73. Mallick, B. N. & Inoue, S. (eds) Rapid Eye Movement Sleep (Marcel Dekker, New York, 1999).

    Google Scholar 

  74. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).'Required reading' for all those interested in the sleep–wake control mechanisms of the hypothalamus. An important theory is introduced that deals with the neural control of sleep–wake stability and the role of orexin in its maintenance.

    Article  CAS  PubMed  Google Scholar 

  75. Steininger, T. L., Alam, M. N., Gong, H., Szmusiak, R. & McGinty, D. Sleep–waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 840, 138–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Miller, J. D., Farber, J., Gatz, P., Roffwarg, H. & German, D. C. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res. 273, 133–141 (1983).

    Article  CAS  PubMed  Google Scholar 

  77. Trulson, M. E., Preussler, D. W. & Howell, A. G. Activity of the substantia nigra across the sleep–wake cycle in freely moving cats. Neurosci. Lett. 26, 183–188 (1981).

    Article  CAS  PubMed  Google Scholar 

  78. Rye, D. B. & Jankovic, J. Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurology 58, 341–346 (2002).

    Article  PubMed  Google Scholar 

  79. Lu, J., Xu, M. & Saper, C. B. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray (PAG). Sleep 25, A290 (2002).

    Google Scholar 

  80. Gillin, J. C. et al. REM inhibitory effect of l-DOPA infusion during human sleep. Electroencephalogr. Clin. Neurophysiol. 35, 181–186 (1973).

    Article  CAS  PubMed  Google Scholar 

  81. Nofzinger, E. A. et al. REM sleep enhancement by bupropion in depressed men. Am. J. Psychiatry 152, 274–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Nunes, G. P. Jr, Tufik, S. & Nobrega, J. N. Autoradiographic analysis of D1 and D2 dopaminergic receptors in rat brain after paradoxical sleep deprivation. Brain Res. Bull. 34, 453–456 (1994).

    Article  CAS  Google Scholar 

  83. Freeman, A. et al. Nigrostriatal collaterals to thalamus degenerate in parkinsonian animal models. Ann. Neurol. 50, 321–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Xi, M. C., Morales, F. R. & Chase, M. H. Induction of wakefulness and inhibition of active sleep by GABAergic processes in the nucleus pontis oralis. Arch. Ital. Biol. 139, 125–145 (2001).

    CAS  PubMed  Google Scholar 

  85. Boissard, R. et al. Neuronal networks responsible for paradoxical sleep onset and maintenance in rats: a new hypothesis. Sleep 23, A107 (2000).

    Google Scholar 

  86. Chase, M. H., Soja, P. J. & Morales, F. R. Evidence that glycine mediates the post synaptic potentials that inhibit lumbar motorneurons during the atonia of active sleep. J. Neurosci. 9, 743–751 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steriade, M. Active neocortical processes during quiescent sleep. Arch. Ital. Biol. 139, 37–51 (2001).

    CAS  PubMed  Google Scholar 

  88. Leonard, T. O. & Lydic, R. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 167–193 (Marcel Dekker, New York, 1999).

    Google Scholar 

  89. Williams, J. A., Vincent, S. R. & Reiner, P. B. Nitric oxide production in rat thalamus changes with behavioral state, local depolarization and brainstem stimulation. J. Neurosci. 17, 420–427 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leonard, T. O., Michaelis, E. K. & Mitchell, K. M. Activity-dependent nitric oxide concentration dynamics in the laterodorsal tegmental nucleus in vivo. J. Neurophysiol. 86, 2159–2172 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Vazquez, J., Lydic, R. & Baghdoyan, H. A. The nitric oxide synthase inhibitor NG-nitro-l–arginine increases basal forebrain acetylcholine release during sleep and wakefulness. J. Neurosci. (in the press).

  92. Braun, A. R. et al. Regional cerebral blood flow throughout the sleep–wake cycle. Brain 120, 1173–1197 (1997).

    Article  PubMed  Google Scholar 

  93. Steiger, A. & Holsboer, F. Neuropeptides and human sleep. Sleep 20, 1038–1052 (1997).

    CAS  PubMed  Google Scholar 

  94. Obal, F. & Krueger, J. M. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 233–247 (Marcel Dekker, New York, 1999).

    Google Scholar 

  95. Sherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).A landmark study of sleep–wake control by the hypothalamus, showing projection from the sleep-promoting VLPO of the anterior hypothalamus to the wake-promoting TMN of the posterior hypothalamus, with corresponding sleep-dependent activation of the VLPO.

    Article  CAS  PubMed  Google Scholar 

  96. Shiromani, P. J., Scammell, T., Sherin, J. E. & Saper, C. B. in Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (eds Lydic, R. & Baghdoyan, H. A.) 311–325 (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

  97. Gallopin, T. et al. Identification of sleep-promoting neurons in vitro. Nature 404, 992–995 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Sherin, J. E., Elmquist, J. K., Torrealba, F. & Saper, C. B. Innervation of histaminergic tuberomammilary neurons by GABAergic and galininergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18, 4705–4721 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Steininger, T. L., Gong, H., McGinty, D. & Szmusiak, R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J. Comp. Neurol. 429, 638–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Yang, Q. Z. & Hatton, G. I. Excitatory and inhibitory inputs to histaminergic tuberomammilary nucleus. Brain Res. 773, 162–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Lu, J., Greco, M. A., Shiromani, P. & Saper, C. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 20, 3830–3842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Panula, P., Pirvola, U., Auvinen, S. & Airaksinen, M. S. Histamine-immunoreactive fibers in the rat brain. Neuroscience 28, 585–610 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Lin, J. S., Hou, Y., Sakai, K. & Jouvet, M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J. Neurosci. 16, 1523–1537 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chou, T. C. et al. Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22, 977–990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Piper, D. C., Upton, N., Smith, M. J. & Hunter, A. J. The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. Eur. J. Neurosci. 12, 726–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Thakkar, M. M., Ramesh, V., Strecker, R. E. & McCarley, R. W. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch. Ital. Biol. 139, 313–328 (2001).

    CAS  PubMed  Google Scholar 

  107. Horvath, T. L. et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J. Comp. Neurol. 415, 145–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Aston-Jones, G., Chen, S., Zhu, Y. & Oshinsky, M. L. A neural circuit for circadian regulation of arousal. Nature Neurosci. 4, 732–738 (2001).An important study showing indirect linkages between the SCN and a known arousal system of waking.

    Article  CAS  PubMed  Google Scholar 

  109. Moore, R. Y., Abrahamson, E. A. & Van Den Pol, A. The hypocretin neuron system: an arousal system in the human brain. Arch. Ital. Biol. 139, 195–205 (2001).

    CAS  PubMed  Google Scholar 

  110. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 6, 991–997 (2000).One of the first demonstrations of an orexinergic deficit in human narcoleptics that corresponds to the genetic deficits seen in animal models of this disorder (see also references 111 and 112).

    Article  CAS  PubMed  Google Scholar 

  111. Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Methippara, M. M., Alam, M. N., Szymusiak, R. & McGinty, D. Effects of lateral preoptic area application of orexin-A on sleep–wakefulness. Neuroreport 11, 3423–3426 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Eggermann, E. et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Bernard, R., Lydic, R. & Baghdoyan, H. A. Hypocretin-1 activates G proteins in arousal-related brainstem nuclei of rat. Neuroreport 13, 447–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Porkka-Heiskanen, T., Strecker, R. E. & Thakkar, M. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268 (1997).One of the first studies to indicate a role for adenosine as the endogenous somnogen whose build-up during waking leads to homeostatic sleep pressure (see also reference 117).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Strecker, R. E. et al. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav. Brain Res. 115, 183–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Borbely, A. A. From slow waves to sleep homeostasis: new perspectives. Arch. Ital. Biol. 139, 53–61 (2001).

    CAS  PubMed  Google Scholar 

  119. Porkka-Heiskanen, T., Strecker, R. E. & McCarley, R. W. Brain site specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99, 507–517 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Basheer, R., Rannie, D. G., Porkka-Heiskanen, T., Ramesh, V. & McCarley, R. W. Adenosine, prolonged wakefulness, and A1-activated NF-κB DNA binding in the basal forebrain of the rat. Neuroscience 104, 731–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Krueger, J. M., Obal, F. & Fang, J. Humoral regulation of physiological sleep: cytokines and GHRH. J. Sleep Res. 8 (Suppl. 1), 53–59 (1999).

    Article  PubMed  Google Scholar 

  122. Mendelson, W. B. & Basile, A. S. The hypnotic actions of the fatty acid oleamide. Neuropsychopharmacology 25, S36–S39 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Semba, K., Pastorius, J., Wilkinson, M. & Rusak, B. Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behav. Brain Res. 120, 75–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Sun, X., Rusak, B. & Semba, K. Electrophysiology and pharmacology of projections from the suprachiasmatic nucleus to the ventrolateral preoptic area in rat. Neuroscience 98, 715–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).A demonstration that it is a subset of the RGCs themselves that transduce photic input into a circadian signal to the SCN through the RHT.

    Article  CAS  PubMed  Google Scholar 

  126. Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B. & Fahrenkrug, J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22, RC191 (2002).One of several recent studies to indicate strongly that melanopsin is the retinal photoreceptor pigment for the circadian system of the SCN (see also references 127–129).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hattar, S. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1069 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gooley, J. J., Lu, J., Chou, T. C., Scamell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci. 4, 1165 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Provencio, I. et al. A novel human opsin in the inner retina. J. Neurosci. 20, 600–605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chou, T. C., Scammell, T., Lu, J., Shiromani, P. & Saper, C. Excitotoxic lesions of the dorsomedial hypothalamic nucleus markedly attenuate circadian rhythms of sleep and body temperature. Soc. Neurosci. Abstr. 26, 1264 (2000).

    Google Scholar 

  131. Lu, J. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep–wake cycle and temperature regulation. J. Neurosci. 21, 4864–4874 (2001).An important study showing differential anterior hypothalamic loci for translating output from the SCN into circadian rhythms of rest/activity and temperature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Abrahamson, E. E., Leak, R. K. & Moore, R. Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Hagan, J. J. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA 96, 10911–10916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wurts, S. & Edgar, D. Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J. Neurosci. 20, 4300–4310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Van Cauter, E. & Turek, F. W. in Endocrinology (ed. DeGroot, L. J.) 2487–2548 (Saunders, Philadelphia, 1995).

    Google Scholar 

  136. Czeisler, C. A. & Khalsa, S. S. in Principles and Practice of Sleep Medicine (eds Kryger, M. H., Roth, T. & Dement, W. C.) 353–375 (Saunders, Philadelphia, 2000).

    Google Scholar 

  137. McGinty, D. & Szymusiak, R. Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci. 13, 480–487 (1990).

    Article  CAS  PubMed  Google Scholar 

  138. Teclemariam-Mesbah, R., Ter Horst, G. J., Fostema, F., Wotel, J. & Buijs, R. M. Anatomical demonstration of the suprachiasmatic nucleus-pineal gland. J. Comp. Neurol. 406, 171–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Wehr, T. A. Melatonin and seasonal rhythms. J. Biol. Rhythms 12, 518–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Liu, C., Weaver, D. R., Jin, X., Shearman, L. P. & Pieschl, R. L. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19, 91–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. von Gall, C. et al. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J. Neurosci. 18, 10389–10397 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Leak, R. K. & Moore, R. Y. Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol. 433, 312–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Krout, K. E., Kawano, J., Mettenleiter, T. C. & Loewy, A. D. CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110, 73–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Gaspar, P., Berger, B., Febvret, A., Vigny, A. & Henry, J. P. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-β-hydroxylase. J. Comp. Neurol. 279, 249–271 (1989).

    Article  CAS  PubMed  Google Scholar 

  145. Mesulam, M.-M., Hersh, L. B., Mash, D. C. & Geula, C. Differential cholinergic innervation within functional sub-divisions of the human cerebral cortex: a choline acetyl-transferase study. J. Comp. Neurol. 318, 316–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  146. Panula, P., Airaksinen, M. S., Pirvola, U. & Kotilainen, E. A histamine containing neuronal system in the human brain. Neuroscience 34, 127–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  147. Wilson, M. A. & Molliver, M. E. The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals. Neuroscience 44, 537–553 (1991).

    Article  CAS  PubMed  Google Scholar 

  148. Hasselmo, M. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 3, 351–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Morrison, A. R., Sanford, L. D. & Ross, R. J. in Rapid Eye Movement Sleep (eds Mallick, B. N. & Inoue, S.) 51–68 (Marcel Dekker, New York, 1999).

    Google Scholar 

  150. Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects (Brain Information Service/Brain Research Institute, University of California at Los Angeles, 1968).

    Google Scholar 

  151. Aserinsky, E. & Kleitman, N. Regularly occurring periods of ocular motility and concomitant phenomena during sleep. Science 118, 361–375 (1953).

    Article  Google Scholar 

  152. Hobson, J. A. Sleep (Scientific American Library, New York, 1989).

    Google Scholar 

  153. Williams, J. A., Comisarow, J., Day, J., Fibiger, H. C. & Reiner, P. B. State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci. 14, 5236–5242 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jones, B. E. & Muhlethaler, M. in Handbook of Behavioral State Control: Molecular and Cellular Mechanisms (eds Lydic, R. & Baghdoyan, H. A.) 213–233 (CRC Press, Boca Raton, Florida, 1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse and the National Institutes of Health. We thank R. Stickgold, B. Kocsis, R. Fosse, C. Saper, P.-H. Luppi, R. Lydic, M. Delnero and A. Morgan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward F. Pace-Schott.

Related links

Related links

DATABASES

LocusLink

aryl sulphotransferase

AVP

Bmal1

Clock

CREB

Cry1–2

cytochrome c oxidase

Egr1

galanin

growth hormone

hypocretin

melanopsin

NF-κB

PACAP

parathyroid hormone

Per1–3

prolactin

ryanodine receptors

tau

VIP

OMIM

advanced sleep-phase syndrome

narcolepsy

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

acetylcholine

adrenaline and noradrenaline

amine neurotransmitters

circadian rhythms

hypothalamus

nitric oxide as a neuronal messenger

serotonin

sleep

sleep disorders

Laboratory of Neurophysiology

Laboratory of Neurophysiology

MIT Encyclopedia of Cognitive Sciences

dreaming

sleep

Glossary

CIRCADIAN RHYTHMS

Biological rhythms of physiology and behaviour that have a 24-h periodicity, which have evolved in response to the 24-h astronomical cycle to which all organisms are exposed.

SUPRACHIASMATIC NUCLEUS

The mammalian circadian pacemaker, or 'master clock', which consists of two tiny, bilaterally symmetrical nuclei in the anterior hypothalamus, located just above the optic chiasm (where the main fibre tracts, or optic nerves, from the two eyes meet). It is therefore ideally situated to receive photic input from the retina through the retinohypothalamic tract, which follows these nerves.

SUBJECTIVE DAY AND SUBJECTIVE NIGHT

The time during which an organism is normally active is referred to as the subjective day. The subjective night describes the period during which an organism is normally inactive and in which its sleep normally occurs. Therefore, a nocturnal animal's subjective day occurs during the astronomical night.

CIRCADIAN TIME

A 24-h period divided into a 12-h activity phase and a 12-h rest phase. In diurnal animals, such as humans, circadian time (CT) 0 designates the start of the activity phase and CT 12 designates the beginning on the rest phase. In nocturnal animals, such as the rat, CT 12 is at the beginning of the activity phase and CT 0 is at the start of the rest phase.

TETRODOTOXIN

A potent marine neurotoxin that blocks voltage-gated sodium channels. Tetrodotoxin was originally isolated from the tetraodon pufferfish, and contains a positively charged guanidinium group and a pyrimidine ring.

LOCUS COERULEUS

A nucleus of the brainstem that is the main supplier of noradrenaline to the brain.

DORSAL RAPHE NUCLEUS

A nucleus of the brainstem that comprises a large cluster of serotonin-containing neurons. An important supplier of serotonin to the forebrain and to other brainstem nuclei.

ULTRADIAN RHYTHMS

Biological rhythms that have a periodicity of less than 24 h, such as the approximately 90-min REM–NREM cycle of the adult human.

TONIC

Physiological events that occur in a sustained manner, unlike phasic events, which occur only transiently with intervening periods of inactivity.

THETA RHYTHM

Rhythmic neural activity with a frequency of 4–8 Hz.

SOMNOGEN

An agent that promotes sleep. Endogenous somnogens accumulate during prolonged waking, tending to produce sleep despite opposing pressures of the circadian cycle. Putative somnogens include adenosine, cytokines, hormones, melatonin, oleomide and prostaglandins

DELTA RHYTHM

Rhythmic neural activity with a frequency of 1–4 Hz that is characteristic of stage III and IV NREM sleep (also known as slow-wave sleep).

SPINDLE RHYTHM

Phasic episodes of 12–14-Hz neural activity that are characteristic of stage II NREM sleep, having a waxing and waning, spindle-like morphology.

ELECTROCULOGRAPHY

The polysomnographic measurement of eye movement by electrodes mounted adjacent to each eye, which detect the electrical dipole produced by the retina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pace-Schott, E., Hobson, J. The Neurobiology of Sleep: Genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3, 591–605 (2002). https://doi.org/10.1038/nrn895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing