Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocannabinoid signalling in reward and addiction

Key Points

  • Cannabinoid receptors and their endogenous ligands are widely expressed throughout the brain, with a particularly strong presence and influence in neuronal circuits such as the mesocorticolimbic pathways highly implicated in reward and addiction.

  • Cannabinoid 1 receptor (CB1R) signalling influences the motivation for both natural and drug rewards. In comparison to most drugs of abuse, CB1Rs exert only modest influence on psychostimulant intake.

  • Brain endocannabinoid (eCB) levels are increased by most drugs of abuse, although the nature of this effect differs between classes of drugs and across brain regions. The response contingency of drug exposure (volitional versus response-independent) seems to influence brain eCB production, suggesting contributions both of drug-related pharmacological effects and of neural activity engaged by active drug-seeking behaviour.

  • Chronic exposure to drugs of abuse generally results in impaired CB1R function, loss of eCB-mediated synaptic plasticity in addiction-related neural circuits, and negative affective states that can be ameliorated through pharmacologically enhanced eCB tone. The eCB system (ECS) has a strong role in modulating relapse-like behaviour induced by conditioned cues or reward priming, and this is evident for both natural and drug rewards.

  • Recent investigations of CNR1 (which encodes CB1R) and fatty acid amide hydrolase (FAAH) variants generally suggest an association with endophenotypes implicated in addiction susceptibility, including reward sensitivity, impulsivity and negative affect. However, confounding factors, including restricted sample size, ethnicity and polysubstance use, limit interpretational power, and the functional consequences of the variants (causal or linked) are currently unknown.

Abstract

Brain endocannabinoid (eCB) signalling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated eCB signalling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired eCB signalling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states and cravings that propel addiction. Understanding the contributions of eCB disruptions to behavioural and physiological traits provides insight into the eCB influence on addiction vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocannabinoid biosynthesis, signalling and clearance.
Figure 2: Distribution of endocannabinoid signalling mechanisms within the brain reward circuits.
Figure 3: Endocannabinoid influences in the VTA and NAc contributing to approach and avoidance behaviours.
Figure 4: Drug-induced alterations in endocannabinoid-mediated synaptic plasticity.
Figure 5: CNR1 and FAAH genes and genetic variants associated with addiction.

Similar content being viewed by others

References

  1. Glass, M., Dragunow, M. & Faull, R. L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77, 299–318 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, X., Dow-Edwards, D., Keller, E. & Hurd, Y. L. Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 118, 681–694 (2003). References 1 and 2 demonstrate in human fetal and adult brains the anatomical expression of cannabinoid receptors, which are important targets for eCB and exogenous cannabinoid ligands.

    Article  CAS  PubMed  Google Scholar 

  3. Atwood, B. K. & Mackie, K. CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160, 467–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salamone, J. D., Correa, M., Mingote, S. M. & Weber, S. M. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr. Opin. Pharmacol. 5, 34–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

    Article  PubMed  Google Scholar 

  6. Everitt, B. J. et al. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. B 363, 3125–3135 (2008).

    Article  Google Scholar 

  7. Carlezon, W. A. Jr & Thomas, M. J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56 (Suppl. 1), 122–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Iemolo, A. et al. CRF–CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacology 38, 2456–2466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herkenham, M. et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583 (1991). One of the first studies to visualize cannabinoid receptors in the rodent brain and show that they are some of the most-abundant G protein-coupled receptors in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sidhpura, N. & Parsons, L. H. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61, 1070–1087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Panagis, G., Mackey, B. & Vlachou, S. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future. Front. Psychiatry 5, 92 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Solinas, M., Justinova, Z., Goldberg, S. R. & Tanda, G. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. J. Neurochem. 98, 408–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Melis, M. & Pistis, M. Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philos. Trans. R. Soc. B 367, 3276–3285 (2012).

    Article  CAS  Google Scholar 

  14. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell. Metab. 17, 475–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Klein, C., Hill, M. N., Chang, S. C., Hillard, C. J. & Gorzalka, B. B. Circulating endocannabinoid concentrations and sexual arousal in women. J. Sex. Med. 9, 1588–1601 (2012).

    Article  PubMed  Google Scholar 

  16. Trezza, V., Baarendse, P. J. & Vanderschuren, L. J. The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol. Sci. 31, 463–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fattore, L. et al. Cannabinoids and reward: interactions with the opioid system. Crit. Rev. Neurobiol. 16, 147–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Mechoulam, R., Hanus, L. O., Pertwee, R. & Howlett, A. C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 15, 757–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Vlachou, S. & Panagis, G. Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals. Curr. Pharm. Des. 20, 2072–2088 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Panlilio, L. V., Justinova, Z. & Goldberg, S. R. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol. Ther. 138, 84–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiley, J. L. et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. Eur. J. Pharmacol. 737, 97–105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Long, J. Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl Acad. Sci. USA 106, 20270–20275 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Justinova, Z. et al. Effects of fatty acid amide hydrolase (FAAH) inhibitors in non-human primate models of nicotine reward and relapse. Neuropsychopharmacology 40, 2185–2197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serrano, A. & Parsons, L. H. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol. Ther. 132, 215–241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellgren, M., Spano, S. M. & Hurd, Y. L. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology 32, 607–615 (2007). This study was among the first to demonstrate that adolescent Δ9-THC exposure results in enhanced μ-opioid receptor signalling in the NAc, which contributes to increased heroin self-administration.

    Article  CAS  PubMed  Google Scholar 

  27. Cheer, J. F. et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J. Neurosci. 27, 791–795 (2007). One of the first studies to demonstrate a common CB1R–DA interaction contributing to the dopaminergic effects produced by abused substances with distinct pharmacological properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alvarez-Jaimes, L. & Parsons, L. H. Regional influence of CB1 receptor signaling on ethanol self-administration by rats. Open Neuropsychopharmacol. J. 2, 77–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simonnet, A., Cador, M. & Caille, S. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area. Addict. Biol. 18, 930–936 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Caille, S., Alvarez-Jaimes, L., Polis, I., Stouffer, D. G. & Parsons, L. H. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J. Neurosci. 27, 3695–3702 (2007). Provides the first in vivo evidence that voluntary self-administration of non-cannabinoid drugs produces drug-specific and dose-reliant alterations in extracellular AEA and 2-AG levels in the rat NAc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D'Souza, M. S. & Markou, A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict. Sci. Clin. Pract. 6, 4–16 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Koob, G. F. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr. Top. Behav. Neurosci. 13, 3–30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shippenberg, T. S. & Elmer, G. I. The neurobiology of opiate reinforcement. Crit. Rev. Neurobiol. 12, 267–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Caille, S. & Parsons, L. H. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 31, 804–813 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Vlachou, S., Nomikos, G. G. & Panagis, G. WIN 55,212-2 decreases the reinforcing actions of cocaine through CB1 cannabinoid receptor stimulation. Behav. Brain Res. 141, 215–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Fattore, L., Martellotta, M. C., Cossu, G., Mascia, M. S. & Fratta, W. CB1 cannabinoid receptor agonist WIN 55,212-2 decreases intravenous cocaine self-administration in rats. Behav. Brain Res. 104, 141–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Oliere, S., Joliette-Riopel, A., Potvin, S. & Jutras-Aswad, D. Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction. Front. Psychiatry 4, 109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xi, Z. X. et al. Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nat. Neurosci. 14, 1160–1166 (2011). Provides the first evidence that drug reward can be modulated by changes in brain CB2R activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H. Y. et al. Species differences in cannabinoid receptor 2 and receptor responses to cocaine self-administration in mice and rats. Neuropsychopharmacology 40, 1037–1051 (2014). Characterizes important species differences in the splicing and expression of CB2R genes and receptor structures relevant to the different effects noted for CB2R-selective ligands in mice and rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ignatowska-Jankowska, B. M., Muldoon, P. P., Lichtman, A. H. & Damaj, M. I. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology 229, 591–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Navarrete, F. et al. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology 38, 2515–2524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adamczyk, P. et al. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res. 1444, 45–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Gamaleddin, I., Zvonok, A., Makriyannis, A., Goldberg, S. R. & Le Foll, B. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PLoS ONE 7, e29900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pava, M. J. & Woodward, J. J. A review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol 46, 185–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ceccarini, J., Casteels, C., Koole, M., Bormans, G. & Van Laere, K. Transient changes in the endocannabinoid system after acute and chronic ethanol exposure and abstinence in the rat: a combined PET and microdialysis study. Eur. J. Nucl. Med. Mol. Imaging 40, 1582–1594 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez-Jaimes, L., Stouffer, D. G. & Parsons, L. H. Chronic ethanol treatment potentiates ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats. J. Neurochem. 111, 37–48 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malinen, H. & Hyytia, P. Ethanol self-administration is regulated by CB1 receptors in the nucleus accumbens and ventral tegmental area in alcohol-preferring AA rats. Alcohol Clin. Exp. Res. 32, 1976–1983 (2008).

    CAS  PubMed  Google Scholar 

  48. Gonzalez, S. et al. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 954, 73–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Buczynski, M. W., Polis, I. Y. & Parsons, L. H. The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area. Neuropsychopharmacology 38, 574–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Vigano, D. et al. Chronic morphine modulates the contents of the endocannabinoid, 2-arachidonoyl glycerol, in rat brain. Neuropsychopharmacology 28, 1160–1167 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Vigano, D. et al. Changes in endocannabinoid levels in a rat model of behavioural sensitization to morphine. Eur. J. Neurosci. 20, 1849–1857 (2004).

    Article  PubMed  Google Scholar 

  52. Patel, S., Rademacher, D. J. & Hillard, C. J. Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J. Pharmacol. Exp. Ther. 306, 880–888 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Bystrowska, B., Smaga, I., Frankowska, M. & Filip, M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog. Neuropsychopharmacol. Biol. Psychiatry 50, 1–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Rivera, P. et al. Cocaine self-administration differentially modulates the expression of endogenous cannabinoid system-related proteins in the hippocampus of Lewis versus Fischer 344 rats. Int. J. Neuropsychopharmacol. 16, 1277–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Palomino, A. et al. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum. Front. Integr. Neurosci. 8, 22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gulyas, A. I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004). One of the first studies to characterize the cellular location of the eCB metabolic enzymes, thereby emphasizing potentially distinct influences of AEA and 2-AG processing on synaptic function.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, J. & Alger, B. E. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat. Neurosci. 13, 592–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merritt, L. L., Martin, B. R., Walters, C., Lichtman, A. H. & Damaj, M. I. The endogenous cannabinoid system modulates nicotine reward and dependence. J. Pharmacol. Exp. Ther. 326, 483–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Muldoon, P. P., Lichtman, A. H., Parsons, L. H. & Damaj, M. I. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence. Life Sci. 92, 458–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Scherma, M. et al. Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J. Pharmacol. Exp. Ther. 327, 482–490 (2008). Provides the first evidence that FAAH inhibition reduces nicotine reward in rats. This finding led to a series of studies demonstrating that stimulation of PPARα receptors by FAAH substrates, including oleoylethanolamide, prevents nicotine-induced activation of the mesolimbic DA system in rats and non-human primates (these collective studies are reviewed and discussed in reference 61).

    Article  CAS  PubMed  Google Scholar 

  61. Melis, M. & Pistis, M. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives. Pharmacol. Res. 86, 42–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Blednov, Y. A., Cravatt, B. F., Boehm, S. L. 2nd, Walker, D. & Harris, R. A. Role of endocannabinoids in alcohol consumption and intoxication: studies of mice lacking fatty acid amide hydrolase. Neuropsychopharmacology 32, 1570–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Vinod, K. Y., Sanguino, E., Yalamanchili, R., Manzanares, J. & Hungund, B. L. Manipulation of fatty acid amide hydrolase functional activity alters sensitivity and dependence to ethanol. J. Neurochem. 104, 233–243 (2008).

    CAS  PubMed  Google Scholar 

  64. Hansson, A. C. et al. Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology 32, 117–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Cippitelli, A. et al. Increase of brain endocannabinoid anandamide levels by FAAH inhibition and alcohol abuse behaviours in the rat. Psychopharmacology 198, 449–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Justinova, Z. et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol. Psychiatry 64, 930–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luchicchi, A. et al. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-α nuclear receptors. Addict. Biol. 15, 277–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lovinger, D. M. Presynaptic modulation by endocannabinoids. Handb. Exp. Pharmacol. 184, 435–477 (2008).

    Article  CAS  Google Scholar 

  69. Mereu, M. et al. Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice. Addict. Biol. 20, 91–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scherma, M. et al. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br. J. Pharmacol. 165, 2539–2548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gamaleddin, I., Guranda, M., Goldberg, S. R. & Le Foll, B. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. Br. J. Pharmacol. 164, 1652–1660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gamaleddin, I. et al. AM404 attenuates reinstatement of nicotine seeking induced by nicotine-associated cues and nicotine priming but does not affect nicotine- and food-taking. J. Psychopharmacol. 27, 564–571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vlachou, S., Stamatopoulou, F., Nomikos, G. G. & Panagis, G. Enhancement of endocannabinoid neurotransmission through CB1 cannabinoid receptors counteracts the reinforcing and psychostimulant effects of cocaine. Int. J. Neuropsychopharmacol. 11, 905–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ducci, F. & Goldman, D. The genetic basis of addictive disorders. Psychiatr. Clin. North Am. 35, 495–519 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nestler, E. J. Epigenetic mechanisms of drug addiction. Neuropharmacology 76, 259–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Hirvonen, J. et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 17, 642–649 (2012). Provides the first in vivo evidence of regionally selective down-regulation of brain CB1Rs in human cannabis smokers.

    Article  CAS  PubMed  Google Scholar 

  77. Ceccarini, J. et al. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict. Biol. 20, 357–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Breivogel, C. S. et al. Chronic Δ9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J. Neurochem. 73, 2447–2459 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Sim, L. J., Hampson, R. E., Deadwyler, S. A. & Childers, S. R. Effects of chronic treatment with Δ9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPγS autoradiography in rat brain. J. Neurosci. 16, 8057–8066 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dudok, B. et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat. Neurosci. 18, 75–86 (2015). Uses nanoscale imaging and electrophysiological techniques to demonstrate that there is greater CB1R expression and influence on perisomatically projecting versus dendritically projecting GABA interneurons in the mouse hippocampus and that persistent deficits in hippocampal LTP following chronic Δ9-THC exposure result from near-complete loss of CB1R at somatic synapses.

    Article  CAS  PubMed  Google Scholar 

  81. Puighermanal, E., Busquets-Garcia, A., Maldonado, R. & Ozaita, A. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Phil. Trans. R. Soc. B 367, 3254–3263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Marzo, V. et al. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of Δ9-tetrahydrocannabinol-tolerant rats. J. Neurochem. 74, 1627–1635 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Schlosburg, J. E. et al. Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice. AAPS J. 11, 342–352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leweke, F. M. et al. Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr. Res. 94, 29–36 (2007).

    Article  PubMed  Google Scholar 

  85. Morgan, C. J. et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br. J. Psychiatry 202, 381–382 (2013).

    Article  PubMed  Google Scholar 

  86. Muhl, D. et al. Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse. Naunyn Schmiedebergs Arch. Pharmacol. 387, 691–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Lutz, B. Endocannabinoid signals in the control of emotion. Curr. Opin. Pharmacol. 9, 46–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Murillo-Rodriguez, E. et al. The emerging role of the endocannabinoid system in the sleep-wake cycle modulation. Cent. Nerv. Syst. Agents Med. Chem. 11, 189–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Budney, A. J., Hughes, J. R., Moore, B. A. & Novy, P. L. Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch. Gen. Psychiatry 58, 917–924 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Gates, P., Albertella, L. & Copeland, J. Cannabis withdrawal and sleep: a systematic review of human studies. Subst. Abus. http://dx.doi.org/10.1080/08897077.2015.1023484 (2015).

  91. Serrano, A. et al. Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcohol Clin. Exp. Res. 36, 984–994 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Mitrirattanakul, S. et al. Bidirectional alterations of hippocampal cannabinoid 1 receptors and their endogenous ligands in a rat model of alcohol withdrawal and dependence. Alcohol Clin. Exp. Res. 31, 855–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Vinod, K. Y. et al. Selective alterations of the CB1 receptors and the fatty acid amide hydrolase in the ventral striatum of alcoholics and suicides. J. Psychiatr. Res. 44, 591–597 (2010).

    Article  PubMed  Google Scholar 

  94. Hirvonen, J. et al. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol. Psychiatry 18, 916–921 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Ceccarini, J. et al. Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J. Neurosci. 34, 2822–2831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neumeister, A. et al. Positron emission tomography shows elevated cannabinoid CB1 receptor binding in men with alcohol dependence. Alcohol Clin. Exp. Res. 36, 2104–2109 (2012). This study was among the first to demonstrate altered brain CB1R availability in humans with alcoholism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vinod, K. Y., Yalamanchili, R., Xie, S., Cooper, T. B. & Hungund, B. L. Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. Neurochem. Int. 49, 619–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Werling, L. L., Reed, S. C., Wade, D. & Izenwasser, S. Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats. Int. J. Dev. Neurosci. 27, 263–269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marco, E. M. et al. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats. Eur. J. Pharmacol. 557, 37–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Rubino, T., Tizzoni, L., Vigano, D., Massi, P. & Parolaro, D. Modulation of rat brain cannabinoid receptors after chronic morphine treatment. Neuroreport 8, 3219–3223 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Cichewicz, D. L., Haller, V. L. & Welch, S. P. Changes in opioid and cannabinoid receptor protein following short-term combination treatment with Δ9-tetrahydrocannabinol and morphine. J. Pharmacol. Exp. Ther. 297, 121–127 (2001).

    CAS  PubMed  Google Scholar 

  102. Adamczyk, P. et al. Long-lasting increase in [3H]CP55,940 binding to CB1 receptors following cocaine self-administration and its withdrawal in rats. Brain Res. 1451, 34–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Pavon, F. J. et al. Evaluation of plasma-free endocannabinoids and their congeners in abstinent cocaine addicts seeking outpatient treatment: impact of psychiatric co-morbidity. Addict. Biol. 18, 955–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Heifets, B. D. & Castillo, P. E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 71, 283–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Adermark, L., Jonsson, S., Ericson, M. & Soderpalm, B. Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61, 1160–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Clarke, R. B. & Adermark, L. Acute ethanol treatment prevents endocannabinoid-mediated long-lasting disinhibition of striatal output. Neuropharmacology 58, 799–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. DePoy, L. et al. Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc. Natl Acad. Sci. USA 110, 14783–14788 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24, 6939–6945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pan, B., Hillard, C. J. & Liu, Q. S. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci. 28, 1385–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, Q. S., Pu, L. & Poo, M. M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437, 1027–1031 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Grueter, B. A. et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J. Neurosci. 26, 3210–3219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McElligott, Z. A. & Winder, D. G. Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1329–1335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hoffman, A. F., Oz, M., Caulder, T. & Lupica, C. R. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23, 4815–4820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mato, S. et al. A single in-vivo exposure to Δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7, 585–586 (2004). References 113 and 114 were among the first to demonstrate that Δ9-THC exposure disrupts synaptic plasticity of NAc neurons in rodents.

    Article  CAS  PubMed  Google Scholar 

  115. Reisiger, A. R. et al. Nicotine self-administration induces CB1-dependent LTP in the bed nucleus of the stria terminalis. J. Neurosci. 34, 4285–4292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koob, G. & Kreek, M. J. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am. J. Psychiatry 164, 1149–1159 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Morena, M., Patel, S., Bains, J. S. & Hill, M. N. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology http://dx.doi.org/10.1038/npp.2015.166 (2015).

  118. Ruehle, S., Rey, A. A., Remmers, F. & Lutz, B. The endocannabinoid system in anxiety, fear memory and habituation. J. Psychopharmacol. 26, 23–39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bura, S. A., Burokas, A., Martin-Garcia, E. & Maldonado, R. Effects of chronic nicotine on food intake and anxiety-like behaviour in CB1 knockout mice. Eur. Neuropsychopharmacol. 20, 369–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Cippitelli, A. et al. Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. PLoS ONE 6, e28142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mannucci, C. et al. Interactions between endocannabinoid and serotonergic systems in mood disorders caused by nicotine withdrawal. Nicotine Tob. Res. 13, 239–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. McKinzie, D. L. et al. Acoustic startle and fear-potentiated startle in alcohol-preferring (P) and -nonpreferring (NP) lines of rats. Pharmacol. Biochem. Behav. 65, 691–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Barrenha, G. D. & Chester, J. A. Genetic correlation between innate alcohol preference and fear-potentiated startle in selected mouse lines. Alcohol Clin. Exp. Res. 31, 1081–1088 (2007).

    Article  PubMed  Google Scholar 

  124. Powers, M. S., Barrenha, G. D., Mlinac, N. S., Barker, E. L. & Chester, J. A. Effects of the novel endocannabinoid uptake inhibitor, LY2183240, on fear-potentiated startle and alcohol-seeking behaviors in mice selectively bred for high alcohol preference. Psychopharmacology 212, 571–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gunduz-Cinar, O., Hill, M. N., McEwen, B. S. & Holmes, A. Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol. Sci. 34, 637–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Marsicano, G. & Lafenetre, P. Roles of the endocannabinoid system in learning and memory. Curr. Top. Behav. Neurosci. 1, 201–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Carter, B. L. & Tiffany, S. T. Cue-reactivity and the future of addiction research. Addiction 94, 349–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. De Vries, T. J. & Schoffelmeer, A. N. Cannabinoid CB1 receptors control conditioned drug seeking. Trends Pharmacol. Sci. 26, 420–426 (2005). This review details seminal studies by the authors and others demonstrating that CB1R blockade attenuates relapse-like behaviour in rats, thus paving the way for numerous studies demonstrating a potent influence of CB1R signalling on relapse-like behaviour induced both by drug exposure and by drug-paired conditioned cues across multiple classes of abused drugs.

    Article  CAS  PubMed  Google Scholar 

  129. Fattore, L. et al. An endocannabinoid mechanism in relapse to drug seeking: a review of animal studies and clinical perspectives. Brain Res. Rev. 53, 1–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Alvarez-Jaimes, L., Polis, I. & Parsons, L. H. Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 33, 2483–2493 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Kodas, E., Cohen, C., Louis, C. & Griebel, G. Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology 194, 161–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. De Vries, T. J., de Vries, W., Janssen, M. C. & Schoffelmeer, A. N. Suppression of conditioned nicotine and sucrose seeking by the cannabinoid-1 receptor antagonist SR141716A. Behav. Brain Res. 161, 164–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Ward, S. J., Rosenberg, M., Dykstra, L. A. & Walker, E. A. The CB1 antagonist rimonabant (SR141716) blocks cue-induced reinstatement of cocaine seeking and other context and extinction phenomena predictive of relapse. Drug Alcohol Depend. 105, 248–255 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xi, Z. X. et al. Cannabinoid CB1 receptor antagonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. J. Neurosci. 26, 8531–8536 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Petrocellis, L., Bisogno, T., Davis, J. B., Pertwee, R. G. & Di Marzo, V. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 483, 52–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. van der Stelt, M. et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci. 63, 1410–1424 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cippitelli, A. et al. The anandamide transport inhibitor AM404 reduces ethanol self-administration. Eur. J. Neurosci. 26, 476–486 (2007).

    Article  PubMed  Google Scholar 

  138. Mangieri, R. A., Hong, K. I., Piomelli, D. & Sinha, R. An endocannabinoid signal associated with desire for alcohol is suppressed in recently abstinent alcoholics. Psychopharmacology 205, 63–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Conklin, C. A. & Tiffany, S. T. Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97, 155–167 (2002).

    Article  PubMed  Google Scholar 

  140. Crombag, H. S. & Shaham, Y. Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav. Neurosci. 116, 169–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002). Supplies the first evidence for a strong influence of CB1Rs in the amygdala in extinction learning related to fear, and this has led to critical insight into eCB mechanisms related to emotional pathologies, including anxiety disorders and post-traumatic stress disorder.

    Article  CAS  PubMed  Google Scholar 

  142. Lutz, B. The endocannabinoid system and extinction learning. Mol. Neurobiol. 36, 92–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Kaplan, G. B., Heinrichs, S. C. & Carey, R. J. Treatment of addiction and anxiety using extinction approaches: neural mechanisms and their treatment implications. Pharmacol. Biochem. Behav. 97, 619–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Kendler, K. S., Karkowski, L. M., Neale, M. C. & Prescott, C. A. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch. Gen. Psychiatry 57, 261–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Agrawal, A. & Lynskey, M. T. Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103, 1069–1081 (2008).

    Article  PubMed  Google Scholar 

  146. Hillard, C. J., Weinlander, K. M. & Stuhr, K. L. Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 204, 207–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Lopez-Moreno, J. A., Echeverry-Alzate, V. & Buhler, K. M. The genetic basis of the endocannabinoid system and drug addiction in humans. J. Psychopharmacol. 26, 133–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, P. W. et al. Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol. Psychiatry 9, 916–931 (2004). Provides detailed structural characterization of human CNR1 , thereby providing information on splice variants and novel SNPs as well as evidence of a haplotype-specific association between CNR1 mRNA expression and substance abuse phenotype.

    Article  CAS  PubMed  Google Scholar 

  149. Schroth, G. P., Chou, P. J. & Ho, P. S. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J. Biol. Chem. 267, 11846–11855 (1992).

    CAS  PubMed  Google Scholar 

  150. Comings, D. E. et al. Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol. Psychiatry 2, 161–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Ballon, N. et al. (AAT)n repeat in the cannabinoid receptor gene (CNR1): association with cocaine addiction in an African-Caribbean population. Pharmacogenomics J. 6, 126–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Covault, J., Gelernter, J. & Kranzler, H. Association study of cannabinoid receptor gene (CNR1) alleles and drug dependence. Mol. Psychiatry 6, 501–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Benyamina, A., Kebir, O., Blecha, L., Reynaud, M. & Krebs, M. O. CNR1 gene polymorphisms in addictive disorders: a systematic review and a meta-analysis. Addict. Biol. 16, 1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Schmidt, L. G. et al. Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence. Drug Alcohol Depend. 65, 221–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Ehlers, C. L., Slutske, W. S., Lind, P. A. & Wilhelmsen, K. C. Association between single nucleotide polymorphisms in the cannabinoid receptor gene (CNR1) and impulsivity in southwest California Indians. Twin Res. Hum. Genet. 10, 805–811 (2007).

    Article  PubMed  Google Scholar 

  156. Proudnikov, D. et al. Association of polymorphisms of the cannabinoid receptor (CNR1) and fatty acid amide hydrolase (FAAH) genes with heroin addiction: impact of long repeats of CNR1. Pharmacogenomics J. 10, 232–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Li, M. J. et al. GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 40, D1047–D1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. van den Wildenberg, E., Janssen, R. G., Hutchison, K. E., van Breukelen, G. J. & Wiers, R. W. Polymorphisms of the dopamine D4 receptor gene (DRD4 VNTR) and cannabinoid CB1 receptor gene (CNR1) are not strongly related to cue-reactivity after alcohol exposure. Addict. Biol. 12, 210–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Haughey, H. M., Marshall, E., Schacht, J. P., Louis, A. & Hutchison, K. E. Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction 103, 1678–1686 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology 35, 967–975 (2010). Leverages previous investigations to provide insights on CNR1 and FAAH gene interaction in association with in vivo neural reactivity in the reward system to marijuana-related cues. The work emphasizes the additive genetic influence on cue reactivity as an intermediate endophenotype in cannabis abuse.

    Article  CAS  PubMed  Google Scholar 

  161. Hutchison, K. E. et al. The incentive salience of alcohol: translating the effects of genetic variant in CNR1. Arch. Gen. Psychiatry 65, 841–850 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Agrawal, A. et al. Evidence for association between polymorphisms in the cannabinoid receptor 1 (CNR1) gene and cannabis dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 736–740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hopfer, C. J. et al. Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 895–901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hartman, C. A. et al. The association between cannabinoid receptor 1 gene (CNR1) and cannabis dependence symptoms in adolescents and young adults. Drug Alcohol Depend. 104, 11–16 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Herman, A. I., Kranzler, H. R., Cubells, J. F., Gelernter, J. & Covault, J. Association study of the CNR1 gene exon 3 alternative promoter region polymorphisms and substance dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 499–503 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sipe, J. C., Chiang, K., Gerber, A. L., Beutler, E. & Cravatt, B. F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl Acad. Sci. USA 99, 8394–8399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chiang, K. P., Gerber, A. L., Sipe, J. C. & Cravatt, B. F. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum. Mol. Genet. 13, 2113–2119 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Tyndale, R. F., Payne, J. I., Gerber, A. L. & Sipe, J. C. The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: studies of drug use and dependence in Caucasians. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 660–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Buhler, K. M. et al. Risky alcohol consumption in young people is associated with the fatty acid amide hydrolase gene polymorphism C385A and affective rating of drug pictures. Mol. Genet. Genomics 289, 279–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Hariri, A. R. et al. Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biol. Psychiatry 66, 9–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Glahn, D. C., Lovallo, W. R. & Fox, P. T. Reduced amygdala activation in young adults at high risk of alcoholism: studies from the Oklahoma family health patterns project. Biol. Psychiatry 61, 1306–1309 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Maccarrone, M., Guzman, M., Mackie, K., Doherty, P. & Harkany, T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat. Rev. Neurosci. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hurd, Y. L., Michaelides, M., Miller, M. L. & Jutras-Aswad, D. Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology 76, 416–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Calvigioni, D., Hurd, Y. L., Harkany, T. & Keimpema, E. Neuronal substrates and functional consequences of prenatal cannabis exposure. Eur. Child Adolesc. Psychiatry 23, 931–941 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Gorzalka, B. B. & Dang, S. S. Minireview: endocannabinoids and gonadal hormones: bidirectional interactions in physiology and behavior. Endocrinology 153, 1016–1024 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Stoving, R. K. et al. Leptin, ghrelin, and endocannabinoids: potential therapeutic targets in anorexia nervosa. J. Psychiatr. Res. 43, 671–679 (2009).

    Article  PubMed  Google Scholar 

  177. Monteleone, P. et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J. Clin. Endocrinol. Metab. 97, E917–E924 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Monteleone, P. et al. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 30, 1216–1221 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Siegfried, Z. et al. Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 125B, 126–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Muller, T. D. et al. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa. Child Adolesc. Psychiatry Ment. Health 2, 33 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Monteleone, P. et al. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav. 8, 728–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Sipe, J. C., Waalen, J., Gerber, A. & Beutler, E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. 29, 755–759 (2005).

    Article  CAS  Google Scholar 

  183. Frieling, H. et al. Elevated cannabinoid 1 receptor mRNA is linked to eating disorder related behavior and attitudes in females with eating disorders. Psychoneuroendocrinology 34, 620–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Gerard, N., Pieters, G., Goffin, K., Bormans, G. & Van Laere, K. Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol. Psychiatry 70, 777–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Ishiguro, H. et al. A nonsynonymous polymorphism in cannabinoid CB2 receptor gene is associated with eating disorders in humans and food intake is modified in mice by its ligands. Synapse 64, 92–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Verty, A. N., McGregor, I. S. & Mallet, P. E. Paraventricular hypothalamic CB1 cannabinoid receptors are involved in the feeding stimulatory effects of Δ9-tetrahydrocannabinol. Neuropharmacology 49, 1101–1109 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Lewis, D. Y. & Brett, R. R. Activity-based anorexia in C57/BL6 mice: effects of the phytocannabinoid, Δ9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur. Neuropsychopharmacol. 20, 622–631 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Andries, A., Frystyk, J., Flyvbjerg, A. & Stoving, R. K. Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. Int. J. Eat. Disord. 47, 18–23 (2014).

    Article  PubMed  Google Scholar 

  189. Pataky, Z. et al. Efficacy of rimonabant in obese patients with binge eating disorder. Exp. Clin. Endocrinol. Diabetes 121, 20–26 (2013).

    CAS  PubMed  Google Scholar 

  190. Scherma, M. et al. Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats. Br. J. Pharmacol. 169, 820–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cottone, P. et al. CRF system recruitment mediates dark side of compulsive eating. Proc. Natl Acad. Sci. USA 106, 20016–20020 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Koob, G. F. The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res. 1314, 3–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Blasio, A. et al. Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. Neuropsychopharmacology 38, 2498–2507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. D'Addario, C., Di Francesco, A., Pucci, M., Finazzi Agro, A. & Maccarrone, M. Epigenetic mechanisms and endocannabinoid signalling. FEBS J. 280, 1905–1917 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).

    Article  PubMed  Google Scholar 

  196. Rotter, A. et al. CB1 and CB2 receptor expression and promoter methylation in patients with cannabis dependence. Eur. Addict. Res. 19, 13–20 (2013). The first study to report epigenetic differences in CNR1 , demonstrating alteration of DNA methylation status (in peripheral blood cells) correlated with CB1R expression.

    Article  PubMed  Google Scholar 

  197. DiNieri, J. A. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tomasiewicz, H. C. et al. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol. Psychiatry 72, 803–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Stringer, R. L., Laufer, B. I., Kleiber, M. L. & Singh, S. M. Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin. Epigenetics 5, 14 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Matyas, F. et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 54, 95–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Suárez, J. et al. Distribution of diacylglycerol lipase alpha, an endocannabinoid synthesizing enzyme, in the rat forebrain. Neuroscience 192, 112–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Egertova, M., Simon, G. M., Cravatt, B. F. & Elphick, M. R. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: a new perspective on N-acylethanolamines as neural signaling molecules. J. Comp. Neurol. 506, 604–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Egertova, M. & Elphick, M. R. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J. Comp. Neurol. 422, 159–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Matyas, F. et al. Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. Neuroscience 137, 337–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  205. Lecca, S., Melis, M., Luchicchi, A., Muntoni, A. L. & Pistis, M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164–1176 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Riegel, A. C. & Lupica, C. R. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24, 11070–11078 (2004). Describes the presynaptic and postsynaptic cellular mechanisms that control eCB release and regulation of mesolimbic (VTA) DA-neuron activity via the retrograde activation of presynaptic CB1Rs. This work set the model of eCB–DA interactions, in which increased DA-neuron burst firing is mediated through eCB inhibition of VTA GABA cells (DSI), thus leading to disinhibition of midbrain DA neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kortleven, C., Fasano, C., Thibault, D., Lacaille, J. C. & Trudeau, L. E. The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice. Eur. J. Neurosci. 33, 1751–1760 (2011).

    Article  PubMed  Google Scholar 

  208. Marinelli, S. et al. N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology 32, 298–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Kravitz, A. V., Tye, L. D. & Kreitzer, A. C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Stuber, G. D. et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321, 1690–1692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Robbe, D., Alonso, G., Duchamp, F., Bockaert, J. & Manzoni, O. J. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J. Neurosci. 21, 109–116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Grueter, B. A., Brasnjo, G. & Malenka, R. C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat. Neurosci. 13, 1519–1525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Giuffrida, A. et al. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 2, 358–363 (1999). Provides the first in vivo evidence for interactions between the striatal DA system and eCB formation, which have substantial implications for several pathologies, including addiction and movement disorders.

    Article  CAS  PubMed  Google Scholar 

  214. Winters, B. D. et al. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc. Natl Acad. Sci. USA 109, E2717–E2725 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to L.H.P. (AA020404, AA006420, AA022249 and AA017447) and Y.L.H. (DA023214, DA030359 and DA033660). This is manuscript number 29049 from The Scripps Research Institute. The authors thank D. Lewis for his help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Loren H. Parsons or Yasmin L. Hurd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Synaptic plasticity

The process by which synaptic communication strengthens or weakens as a result of changes in morphology, composition or signal-transduction efficiency in response to intrinsic or extrinsic signals.

Limbic system

A collection of brain structures that includes the amygdala, hippocampus, limbic cortex, limbic midbrain areas and anterior thalamic nuclei, regulates autonomic and endocrine function and participates in the control of emotion, motivation, long-term memory and olfaction.

Intracranial self-stimulation

An operant behavioural paradigm in which subjects produce a behavioural response (such as a lever press or wheel turn) to receive brief electrical pulses into specific regions in the brain reward pathways.

Conditioned place preference

(CPP). A behavioural paradigm used to study the rewarding and aversive effects of drugs through Pavlovian conditioning.

Self-administered

In a medical sense, when a pharmacological substance is purposefully delivered by test subjects to themselves. Operant self-administration is a behavioural procedure in which experimental subjects learn to produce an operant response (for example, a lever press or nose poke) to receive a drug reward (such as an intravenous infusion, a small bolus for oral consumption or delivery of a discrete bolus of vapour that is inhaled).

Discriminative stimulus

A stimulus in a drug-discrimination paradigm that the animal has learned to associate with a predictable consequence (whether rewarding or unrewarding) and that increases the elicitation of a specific behaviour by the animal.

Non-contingent

Drug delivery that is involuntary (experimenter-administered) or is not dependent on a behavioural response by an experimental subject; sometimes referred to as forced administration.

Epigenetic mechanisms

Methods by which functionally relevant changes to the genome occur that do not involve disruptions in the nucleotide sequence of DNA; these include DNA methylation, histone modification and non-coding RNA-associated gene silencing

Extended amygdala

A grouping of brain regions that orchestrate emotional behavioural responses and includes the central nucleus of the amygdala, sublenticular substantia innominate, nucleus accumbens shell and the bed nucleus of the stria terminalis.

Conditioned reinforcement

The process through which neutral stimuli acquire motivational properties through association with a primary reinforcer.

Stochastic optical reconstruction microscopy

A super-resolution imaging technique that uses sequential activation and time-resolved localization of photoswitchable fluorophores to create high-resolution images enabling precise fluorophore localization with nanometre resolution.

Cytogenetic band

A distinct region on the chromosome (visible microscopically after special staining).

Endophenotype

A term used to separate behavioural symptoms into stable phenotypes with a clear genetic basis, typically applicable to heritable disorders.

Haplotype blocks

Sets of DNA variations (or polymorphisms) that tend to be inherited together.

Post-translational histone modification

A covalent modification of histones that package and order DNA into nucleosomes. These modifications occur during or after histone biosynthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, L., Hurd, Y. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 16, 579–594 (2015). https://doi.org/10.1038/nrn4004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4004

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing