Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-translational modifications regulate the ticking of the circadian clock

Key Points

  • Post-translational modifications are as, or even more, important than transcriptional regulation to finely tune circadian rhythms. Oscillations in period (PER) and cryptochrome (CRY) protein abundance levels might be sufficient to establish cycling.

  • Post-translation regulation of the localization, degradation and activity of circadian regulators by phosphorylation, sumoylation and histone acetylation all determine the length of the biological day.

  • Mutations in kinases and phosphatases alter both the core clock, and its ability to respond to environmental (light) cues.

  • The ubiquitin–proteasome pathway controls the degradation of most of the circadian regulatory proteins. Both slimb (SLMB) and β-transducin repeat-containing protein (βTrCP) and the newly identified jetlag are members of the SCF (SKP1–Cullin1–F-box protein) family of ubiquitin ligases that regulate rhythms.

  • Clock components do not exist independently of each other, but rather interact in large multiprotein complexes in which each protein's activity can regulate and be regulated by the others. The PER proteins are scaffolds that physically interact with a large number of other circadian regulators.

  • Sleep disorders are the consequence of misalignments between the endogenous circadian clock and the external environment. Many of the mutations and polymorphisms associated with circadian rhythms disorders affect either the clock kinases casein kinase Iɛ/δ or their substrates, the PER proteins.

Abstract

Getting a good night's sleep is on everyone's to-do list. So is, no doubt, staying awake during late afternoon seminars. Our internal clocks control these and many more workings of the body, and disruptions of the circadian clocks predispose individuals to depression, obesity and cancer. Mutations in kinases and phosphatases in hamsters, flies, fungi and humans highlight how our timepieces are regulated and provide clues as to how we might be able to manipulate them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feedback loops control the mammalian circadian core clock.
Figure 2: Conservation of mechanism in the Drosophila melanogaster and Neurospora crassa circadian clocks.
Figure 3: Multiple roles of casein kinase I in the mammalian circadian clock.
Figure 4: Reversible phosphorylation regulates the degradation of Drosophila melanogaster PER.

Similar content being viewed by others

References

  1. Fu, L., Patel, M. S., Bradley, A., Wagner, E. F. & Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 122, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, L., Pelicano, H., Liu, J., Huang, P. & Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pregueiro, A. M., Liu, Q., Baker, C. L., Dunlap, J. C. & Loros, J. J. The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313, 644–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lie, J. A., Roessink, J. & Kjaerheim, K. Breast cancer and night work among Norwegian nurses. Cancer Causes Control 17, 39–44 (2006).

    Article  PubMed  Google Scholar 

  7. DeCoursey, P. J. & Krulas, J. R. Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J. Biol. Rhythms 13, 229–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S. & Johnson, C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA 95, 8660–8664 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lowrey, P. L. & Takahashi, J. S. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407–441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nature Genet. 37, 187–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Eide, E. J. et al. Control of mammalian circadian rhythm by CKIɛ-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795–2807 (2005). A detailed mechanism for one function of CKI, and the first demonstration that inhibition of CKI and the proteasome actually lengthens the period.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamaguchi, S. et al. The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr. Biol. 10, 873–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ralph, M. R. & Menaker, M. A mutation of the circadian system in golden hamsters. Science 241, 1225–1227 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Emery, P. & Reppert, S. M. A rhythmic Ror. Neuron 43, 443–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ripperger, J. A. & Schibler, U. Rhythmic CLOCK–BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genet. 38, 369–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006). Another post-translational modification that regulates transcription (see reference 24 for a complication of the story).

    Article  CAS  PubMed  Google Scholar 

  24. Debruyne, J. P. et al. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477 (2006). The title tells the story. Whether there is developmental compensation, redundancy or the model requires main alterations remains to be determined.

    Article  CAS  PubMed  Google Scholar 

  25. Hardin, P. E. The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hirayama, J. & Sassone-Corsi, P. Structural and functional features of transcription factors controlling the circadian clock. Curr. Opin. Genet. Dev. 15, 548–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Brunner, M. & Schafmeier, T. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev. 20, 1061–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, W., Zheng, H., Houl, J. H., Dauwalder, B. & Hardin, P. E. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev. 20, 723–733 (2006). Illustrates the many roles of DBT kinase: it regulates nuclear entry, protein stability and, as shown in this article, transcriptional activity of CLK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cyran, S. A. et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 329–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Aronson, B. D., Johnson, K. A., Loros, J. J. & Dunlap, J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263, 1578–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Dunlap, J. C. Proteins in the Neurospora circadian clockworks. J. Biol. Chem. 281, 28489–28493 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, P., He, Q., He, Q., Wang, L. & Liu, Y. Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev. 19, 234–241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schafmeier, T. et al. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122, 235–246 (2005). Both kinases and phosphatases regulate the activity of the circadian transcription factor WCC.

    Article  CAS  PubMed  Google Scholar 

  34. He, Q. et al. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev. 20, 2552–2565 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schafmeier, T., Kaldi, K., Diernfellner, A., Mohr, C. & Brunner, M. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Dev. 20, 297–306 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He, Q. & Liu, Y. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev. 19, 2888–2899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y., Loros, J. & Dunlap, J. C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc. Natl Acad. Sci. USA 97, 234–239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, Q. et al. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22, 4421–4430 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, E. Y. et al. Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34, 69–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Z. & Sehgal, A. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29, 453–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto, Y., Yagita, K. & Okamura, H. Role of cyclic mPer2 expression in the mammalian cellular clock. Mol. Cell. Biol. 25, 1912–1921 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Numano, R. et al. Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms. Proc. Natl Acad. Sci. USA 103, 3716–3721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujimoto, Y., Yagita, K. & Okamura, H. Does mPER2 protein oscillate without its coding mRNA cycling? post-transcriptional regulation by cell clock. Genes Cells 11, 525–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Eide, E. J., Vielhaber, E. L., Hinz, W. A. & Virshup, D. M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277, 17248–17254 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Gallego, M., Eide, E. J., Woolf, M. F., Virshup, D. M. & Forger, D. B. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl Acad. Sci. USA 103, 10618–10623 (2006). Untangling a confused story; a model prediction leads to an important clarification of how a key mutant in circadian rhythms really works.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanada, K., Okano, T. & Fukada, Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem. 277, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, E. Y. & Edery, I. Balance between DBT/CKIɛ kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc. Natl Acad. Sci. USA 103, 6178–6183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iɛ. Cell 94, 97–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Fish, K. J., Cegielska, A., Getman, M. E., Landes, G. M. & Virshup, D. M. Isolation and characterization of human casein kinase Iɛ (CKI), a novel member of the CKI gene family. J. Biol. Chem. 270, 14875–14883 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Vielhaber, E. & Virshup, D. M. Casein kinase I: from obscurity to center stage. IUBMB Life 51, 73–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jones, C. R. et al. Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nature Med. 5, 1062–1065 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005). The first genetic evidence that CKIδ is a circadian rhythms gene, and the identification of the first kinase mutation that alters rhythms in humans.

    Article  CAS  PubMed  Google Scholar 

  56. Gorl, M. et al. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 20, 7074–7084 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meggio, F. & Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Allada, R. & Meissner, R. A. Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol. Cell Biochem. 274, 141–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, J. M. et al. A role for casein kinase 2α in the Drosophila circadian clock. Nature 420, 816–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, J. M., Schroeder, A. & Allada, R. In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD. J. Neurosci. 25, 11175–11183 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akten, B. et al. A role for CK2 in the Drosophila circadian oscillator. Nature Neurosci. 6, 251–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, Y., Cheng, P. & Liu, Y. Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev. 16, 994–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, Y., Cheng, P., He, Q., Wang, L. & Liu, Y. Phosphorylation of FREQUENCY protein by casein kinase II is necessary for the function of the Neurospora circadian clock. Mol. Cell. Biol. 23, 6221–6228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Iitaka, C., Miyazaki, K., Akaike, T. & Ishida, N. A role for glycogen synthase kinase-3β in the mammalian circadian clock. J. Biol. Chem. 280, 29397–29402 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Yin, L., Wang, J., Klein, P. S. & Lazar, M. A. Nuclear receptor Rev-erba is a critical lithium-sensitive component of the circadian clock. Science 311, 1002–1005 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Harada, Y., Sakai, M., Kurabayashi, N., Hirota, T. & Fukada, Y. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3β. J. Biol. Chem. 280, 31714–31721 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Weber, F., Hung, H. C., Maurer, C. & Kay, S. A. Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. J. Neurochem. 98, 248–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Butcher, G. Q., Dziema, H., Collamore, M., Burgoon, P. W. & Obrietan, K. The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 277, 29519–29525 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Oster, H. et al. cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13, 725–733 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Tischkau, S. A. et al. Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43, 539–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Gallego, M. & Virshup, D. M. Protein serine/threonine phosphatases: life, death, and sleeping. Curr. Opin. Cell Biol. 17, 197–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15, 34–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Ceulemans, H. & Bollen, M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, Y. et al. Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev. 18, 255–260 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sathyanarayanan, S., Zheng, X., Xiao, R. & Sehgal, A. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116, 603–615 (2004). The first genetic and biochemical demonstration of a phosphatase in the clock; oscillating PP2A regulatory subunits control PER stability.

    Article  CAS  PubMed  Google Scholar 

  77. Partch, C. L., Shields, K. F., Thompson, C. L., Selby, C. P. & Sancar, A. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl Acad. Sci. USA 103, 10467–10472 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rivers, A., Gietzen, K. F., Vielhaber, E. & Virshup, D. M. Regulation of casein kinase Iɛ and casein kinase Iδ by an in vivo futile phosphorylation cycle. J. Biol. Chem. 273, 15980–15984 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Cegielska, A., Gietzen, K. F., Rivers, A. & Virshup, D. M. Autoinhibition of casein kinase Iɛ (CKIɛ) is relieved by protein phosphatases and limited proteolysis. J. Biol. Chem. 273, 1357–1364 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Koh, K., Zheng, X. & Sehgal, A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312, 1809–1812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Naidoo, N., Song, W., Hunter-Ensor, M. & Sehgal, A. A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Takano, A. et al. Cloning and characterization of rat casein kinase 1ɛ. FEBS Lett. 477, 106–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Keesler, G. A. et al. Phosphorylation and destabilization of human period I clock protein by human casein kinase I ɛ. Neuroreport 11, 951–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Vielhaber, E., Eide, E., Rivers, A., Gao, Z. H. & Virshup, D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I ɛ. Mol. Cell. Biol. 20, 4888–4899 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Camacho, F. et al. Human casein kinase Iδ phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett. 489, 159–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I ɛ (CKIɛ) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miyazaki, K. et al. Phosphorylation of clock protein PER1 regulates its circadian degradation in normal human fibroblasts. Biochem. J. 380, 95–103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shirogane, T., Jin, J., Ang, X. L. & Harper, J. W. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863–26872 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Gallego, M., Kang, H. & Virshup, D. M. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem. J. 399, 169–175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fuchs, S. Y., Spiegelman, V. S. & Kumar, K. G. The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23, 2028–2036 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ang, X. L. & Wade Harper, J. SCF-mediated protein degradation and cell cycle control. Oncogene 24, 2860–2870 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Grima, B. et al. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature 420, 178–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Ko, H. W., Jiang, J. & Edery, I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420, 673–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Lin, F. J., Song, W., Meyer-Bernstein, E., Naidoo, N. & Sehgal, A. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 21, 7287–7294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Forger, D. B. & Peskin, C. S. A detailed predictive model of the mammalian circadian clock. Proc. Natl Acad. Sci. USA 100, 14806–14811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Forger, D. B. & Peskin, C. S. Model based conjectures on mammalian clock controversies. J. Theor. Biol. 230, 533–539 (2004).

    Article  PubMed  Google Scholar 

  97. Cardone, L. et al. Circadian clock control by SUMOylation of BMAL1. Science 309, 1390–1394 (2005). Phosphorylation and dephosphorylation are not the only post-translational modifications that regulate the clock.

    Article  CAS  PubMed  Google Scholar 

  98. Cyran, S. A. et al. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J. Neurosci. 25, 5430–5437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nawathean, P. & Rosbash, M. The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell 13, 213–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Takano, A., Isojima, Y. & Nagai, K. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279, 32578–32585 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Saez, L. & Young, M. W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17, 911–920 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Shafer, O. T., Rosbash, M. & Truman, J. W. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 22, 5946–5954 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer, P., Saez, L. & Young, M. W. PER–TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311, 226–229 (2006). A previously unrecognized timing mechanism when moving PER and TIM from the cytoplasm to the nucleus.

    Article  CAS  PubMed  Google Scholar 

  105. Dunlap, J. C. Physiology. Running a clock requires quality time together. Science 311, 184–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, F., Virshup, D. M., Nairn, A. C. & Greengard, P. Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. J. Biol. Chem. 277, 45393–45399 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Swiatek, W. et al. Regulation of casein kinase I ɛ activity by Wnt signaling. J. Biol. Chem. 279, 13011–13017 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Wijnen, H., Boothroyd, C., Young, M. W. & Claridge-Chang, A. Molecular genetics of timing in intrinsic circadian rhythm sleep disorders. Ann. Med. 34, 386–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Lewy, A. J., Lefler, B. J., Emens, J. S. & Bauer, V. K. The circadian basis of winter depression. Proc. Natl Acad. Sci. USA 103, 7414–7419 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ebisawa, T. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342–346 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takano, A. et al. A missense variation in human casein kinase I ɛ gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 29, 1901–1909 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Virshup's homepage

Glossary

Suprachiasmatic nucleus

(SCN). Paired hypothalamic collection of neurons that receive signals from the retina and regulate circadian behaviour. Destruction of the SCN causes arrhythmic behaviour.

PAS domain

Protein domain first identified in period, arnt, and simple-minded; it mediates protein–protein interactions.

Stabilizing loop

A separate interacting transcription–translation loop that reinforces the oscillations that are driven by a core loop.

Locomotor activity

Circadian rhythms cause changes in activity (along with many other changes). Wheel running in a cage is a form of locomotor activity.

Eclosion

Hatching of an insect larva from an egg.

Free-running period

Rhythms observed in nature continue in the laboratory even under constant experimental conditions such as constant light or constant dark. The persistence of these rhythms is seen as proof of endogenous biological clocks. When in constant conditions away from any external cues, these rhythms are called free runs.

Familial advanced sleep-phase syndrome

(FASPS). A dominantly inherited short-circadian-period disorder.

Conidation

Conidation is asexual reproduction in Ascomycetes by the formation of asexual, non-motile spores.

Delayed sleep-phase syndrome

(DSPS). Patients with DSPS have late sleep-onset and the inability to wake up at a conventional time.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, M., Virshup, D. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8, 139–148 (2007). https://doi.org/10.1038/nrm2106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing