Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting key proximal drivers of type 2 inflammation in disease

Key Points

  • Type 2 inflammation, which encompasses systemic T helper 2 (TH2)-type responses, is emerging as a unifying feature of both classically defined allergic diseases such as asthma and a range of other inflammatory diseases.

  • Although immunological diseases may appear disparate based on their distinct organ or tissue manifestations, the tendency for diverse allergic diseases to present as co-morbidities or progressively suggests that they may share common underlying drivers.

  • The proximal type 2 cytokines interleukin-4 (IL-4), IL-5 and IL-13, produced by both innate and TH2 cells, contribute to the hallmarks of type 2-driven diseases, such as elevated immunoglobulin E (IgE) production and systemic and tissue-infiltrated eosinophilia.

  • Early clinical studies in asthma targeting IL-4, IL-5 and IL-13 did not lead to clear efficacy, possibly owing to the molecular properties of the blockers, route of administration, bioavailability and/or incorrect study patient population. However, these studies contributed to a growing understanding of the heterogeneity of asthma that led to the successful targeting of IL-4, IL-5 and/or IL-13 in subsets of patients with high biomarkers of type 2 inflammation.

  • Probing the molecular underpinnings of atopic dermatitis also revealed prominent type 2 inflammation. Although targeting IgE or IL-5 alone did not show clinical effects in atopic dermatitis, dual blockade of IL-4 and IL-13 demonstrated significant efficacy, confirming that type 2 inflammation mediates atopic dermatitis.

  • The success of systemic IL-4 and IL-13 blockade across three allergic diseases with disparate specific tissue manifestations — asthma, atopic dermatitis and chronic sinusitis with nasal polyps — suggests that the IL-4–IL-13 pathway is a key central driver pathway in immunological diseases.

  • Rather than defining atopic diseases by their apparent tissue manifestations, the identification of driver pathways in these three diseases suggests that immunological diseases can be defined and grouped based on their driver immunological pathways to enable tailored therapy.

Abstract

Systemic type 2 inflammation encompassing T helper 2 (TH2)-type responses is emerging as a unifying feature of both classically defined allergic diseases, such as asthma, and a range of other inflammatory diseases. Rather than reducing inflammation with broad-acting immunosuppressants or narrowly targeting downstream products of the TH2 pathway, such as immunoglobulin E (IgE), efforts to target the key proximal type 2 cytokines — interleukin-4 (IL-4), IL-5 and IL-13 — represent a promising strategy to achieve therapeutic benefit across multiple diseases. After several initial disappointing clinical results with therapies targeting IL-4, IL-5 or IL-13 in asthma, applying a personalized approach achieved therapeutic benefit in an asthma subtype exhibiting an 'allergic' phenotype. More recently, efficacy was extended into a broad population of people with asthma. This argues that the Type 2 inflammation is broadly relevant across the severe asthma population if the key upstream drivers are properly blocked. Moreover, the simultaneous inhibition of IL-4 and IL-13 has shown significant clinical activity in diseases that are often co-morbid with asthma — atopic dermatitis and chronic sinusitis with nasal polyps — supporting the hypothesis that targeting a central 'driver pathway' could benefit multiple allergic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor systems for IL-4, IL-13 and IL-5.
Figure 2: Type 2 inflammation in severe asthma, atopic dermatitis and chronic sinusitis with nasal polyps.
Figure 3: Targeting key proximal drivers of the type-2 pathway versus end-product mediators.

Similar content being viewed by others

References

  1. Asher, M. I. et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368, 733–743 (2006).

    Article  PubMed  Google Scholar 

  2. Pawankar, R., Canonica, G., Holgate, S. & Lockey, R. WAO White Book on Allergy 2011–2012: Executive Summary (World Allergy Organization, 2011).

    Google Scholar 

  3. Prescott, S. L. et al. A global survey of changing patterns of food allergy burden in children. World Allergy Organ. J. 6, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kay, A. B. Allergy and allergic diseases. Second of two parts. N. Engl. J. Med. 344, 109–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kay, A. B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Wynn, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. Nat. Rev. Immunol. 15, 271–282 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Peebles, R. S. Jr. At the bedside: the emergence of group 2 innate lymphoid cells in human disease. J. Leukoc. Biol. 97, 469–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Leung, D. Y. & Bieber, T. Atopic dermatitis. Lancet 361, 151–160 (2003).

    Article  PubMed  Google Scholar 

  9. Adcock, I. M., Maneechotesuwan, K. & Usmani, O. Molecular interactions between glucocorticoids and long-acting β2-agonists. J. Allergy Clin. Immunol. 110, S261–S268 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Haeck, I. M. et al. Enteric-coated mycophenolate sodium versus cyclosporin A as long-term treatment in adult patients with severe atopic dermatitis: a randomized controlled trial. J. Am. Acad. Dermatol. 64, 1074–1084 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Seale, J. P. & Compton, M. R. Side-effects of corticosteroid agents. Med. J. Aust. 144, 139–142 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Nesbitt, L. T. Jr. Minimizing complications from systemic glucocorticosteroid use. Dermatol. Clin. 13, 925–939 (1995).

    Article  PubMed  Google Scholar 

  13. Jacobi, A., Antoni, C., Manger, B., Schuler, G. & Hertl, M. Infliximab in the treatment of moderate to severe atopic dermatitis. J. Am. Acad. Dermatol. 52, 522–526 (2005).

    Article  PubMed  Google Scholar 

  14. Fahy, J. V. et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 155, 1828–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Busse, W. et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 108, 184–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Soler, M. et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 18, 254–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Gevaert, P. et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J. Allergy Clin. Immunol. 131, 110–116.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Maurer, M., Rosen, K. & Hsieh, H. J. Omalizumab for chronic urticaria. N. Engl. J. Med. 368, 2530 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Saini, S. S. et al. Efficacy and safety of omalizumab in patients with chronic idiopathic/spontaneous urticaria who remain symptomatic on H1 antihistamines: a randomized, placebo-controlled study. J. Invest. Dermatol. 135, 925 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Zuberbier, T. & Maurer, M. Omalizumab for the treatment of chronic urticaria. Expert Rev. Clin. Immunol. 11, 171–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Heil, P. M., Maurer, D., Klein, B., Hultsch, T. & Stingl, G. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course — a randomized, placebo-controlled and double blind pilot study. J. Dtsch. Dermatol. Ges. 8, 990–998 (2010).

    PubMed  Google Scholar 

  22. Jeong, C. W. et al. Differential in vivo cytokine mRNA expression in lesional skin of intrinsic versus extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin. Exp. Allergy 33, 1717–1724 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Suárez- Fariñas, M. et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J. Allergy Clin. Immunol. 132, 361–370 (2013).

    Article  CAS  Google Scholar 

  24. Akdis, C. A. & Akdis, M. Immunological differences between intrinsic and extrinsic types of atopic dermatitis. Clin. Exp. Allergy 33, 1618–1621 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ying, S. et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J. Immunol. 158, 3539–3544 (1997).

    CAS  PubMed  Google Scholar 

  26. Green, R. H. et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360, 1715–1721 (2002).

    Article  PubMed  Google Scholar 

  27. Bentley, A. M. et al. Identification of T lymphocytes, macrophages, and activated eosinophils in the bronchial mucosa in intrinsic asthma. Relationship to symptoms and bronchial responsiveness. Am. Rev. Respir. Dis. 146, 500–506 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Gittler, J. K. et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 130, 1344–1354 (2012). This study elucidated the molecular factors of acute and chronic atopic dermatitis lesions as a progressive activation of T H 2 and T H 22 immune axes rather than biphasic response predominating in T H 2 in acute lesion and a switch to T H 1 in chronic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamid, Q., Boguniewicz, M. & Leung, D. Y. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J. Clin. Invest. 94, 870–876 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grewe, M. et al. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J. Invest. Dermatol. 105, 407–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Pacor, M. L. et al. Comparing tacrolimus ointment and oral cyclosporine in adult patients affected by atopic dermatitis: a randomized study. Clin. Exp. Allergy 34, 639–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Suárez- Fariñas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 127, 954–964.e4 (2011). This study found that non-lesional skin of patients with atopic dermatitis is distinct from skin of healthy patients, indicative of systemic immune activation in patients with atopic dermatitis.

    Article  Google Scholar 

  33. Kakinuma, T. et al. Thymus and activation-regulated chemokine in atopic dermatitis: serum thymus and activation-regulated chemokine level is closely related with disease activity. J. Allergy Clin. Immunol. 107, 535–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hijnen, D. et al. Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell- attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J. Allergy Clin. Immunol. 113, 334–340 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Jahnz-Rozyk, K., Targowski, T., Paluchowska, E., Owczarek, W. & Kucharczyk, A. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Allergy 60, 685–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Imai, T. et al. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. Chem. 272, 15036–15042 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. van Drunen, C. M., Reinartz, S., Wigman, J. & Fokkens, W. J. Inflammation in chronic rhinosinusitis and nasal polyposis. Immunol. Allergy Clin. North Am. 29, 621–629 (2009).

    Article  PubMed  Google Scholar 

  38. Meltzer, E. O. et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J. Allergy Clin. Immunol. 114, 155–212 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Van Zele, T. et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61, 1280–1289 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Van Cauwenberge, P., Van Hoecke, H. & Bachert, C. Pathogenesis of chronic rhinosinusitis. Curr. Allergy Asthma Rep. 6, 487–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Aouad, R. K. & Chiu, A. G. State of the art treatment of nasal polyposis. Am. J. Rhinol. Allergy 25, 291–298 (2011).

    Article  PubMed  Google Scholar 

  42. Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA 94, 10838–10843 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kopf, M. et al. Disruption of the murine IL-4 gene blocks TH2 cytokine responses. Nature 362, 245–248 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Barner, M., Mohrs, M., Brombacher, F. & Kopf, M. Differences between IL-4Rα-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Curr. Biol. 8, 669–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Liddiard, K. et al. Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter. BMC Mol. Biol. 7, 45 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Wirnsberger, G., Hebenstreit, D., Posselt, G., Horejs-Hoeck, J. & Duschl, A. IL-4 induces expression of TARC/CCL17 via two STAT6 binding sites. Eur. J. Immunol. 36, 1882–1891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mochizuki, M., Bartels, J., Mallet, A. I., Christophers, E. & Schroder, J. M. IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J. Immunol. 160, 60–68 (1998).

    CAS  PubMed  Google Scholar 

  48. Hoeck, J. & Woisetschlager, M. STAT6 mediates eotaxin-1 expression in IL-4 or TNF-α-induced fibroblasts. J. Immunol. 166, 4507–4515 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  50. Lazarski, C. A., Ford, J., Katzman, S. D., Rosenberg, A. F. & Fowell, D. J. IL-4 attenuates Th1-associated chemokine expression and Th1 trafficking to inflamed tissues and limits pathogen clearance. PLoS ONE 8, e71949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner, F., Fischer, N., Lersch, C., Hart, R. & Dancygier, H. Interleukin 4 inhibits the interleukin 2-induced production of its functional antagonist, interferon γ. Immunol. Lett. 21, 237–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Van Dyken, S. J. & Locksley, R. M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol. 31, 317–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hershey, G. K. IL-13 receptors and signaling pathways: an evolving web. J. Allergy Clin. Immunol. 111, 677–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Akaiwa, M. et al. Localization of human interleukin 13 receptor in non-haematopoietic cells. Cytokine 13, 75–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. McKenzie, G. J., Fallon, P. G., Emson, C. L., Grencis, R. K. & McKenzie, A. N. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J. Exp. Med. 189, 1565–1572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. LaPorte, S. L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laporte, J. C. et al. Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 164, 141–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Chatila, T. A. Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med. 10, 493–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Finkelman, F. D. et al. Suppression of in vivo polyclonal IgE responses by monoclonal antibody to the lymphokine B-cell stimulatory factor 1. Proc. Natl Acad. Sci. USA 83, 9675–9678 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Finkelman, F. D. et al. Regulation of murine in vivo IgG and IgE responses by a monoclonal anti-IL-4 receptor antibody. Int. Immunol. 3, 599–607 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Grunewald, S. M. et al. An antagonistic IL-4 mutant prevents type I allergy in the mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral immune response to allergen and development of allergic symptoms in vivo. J. Immunol. 160, 4004–4009 (1998).

    CAS  PubMed  Google Scholar 

  62. McKenzie, G. J. et al. Impaired development of Th2 cells in IL-13-deficient mice. Immunity 9, 423–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Mohrs, M. et al. Differences between IL-4- and IL-4 receptor α-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162, 7302–7308 (1999).

    CAS  PubMed  Google Scholar 

  64. Ogata, H. et al. Regulation of interleukin-13 receptor constituents on mature human B lymphocytes. J. Biol. Chem. 273, 9864–9871 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kouro, T. & Takatsu, K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int. Immunol. 21, 1303–1309 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Yamada, T. et al. IL-3, IL-5, granulocyte–macrophage colony- stimulating factor receptor α-subunit, and common β-subunit expression by peripheral leukocytes and blood dendritic cells. J. Allergy Clin. Immunol. 101, 677–682 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Foster, P. S., Hogan, S. P., Ramsay, A. J., Matthaei, K. I. & Young, I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Busse, W. W., Ring, J., Huss-Marp, J. & Kahn, J. E. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 125, 803–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Moqbel, R. & Odemuyiwa, S. O. Allergy, asthma, and inflammation: which inflammatory cell type is more important? Allergy Asthma Clin. Immunol. 4, 150–156 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Webb, D. C. et al. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J. Immunol. 165, 108–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Rosenberg, H. F., Phipps, S. & Foster, P. S. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol. 119, 1303–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Gavett, S. H. et al. Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am. J. Physiol. 272, L253–L261 (1997).

    CAS  PubMed  Google Scholar 

  73. Brusselle, G. G. et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy 24, 73–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Walter, D. M. et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol. 167, 4668–4675 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Cockcroft, D. W. & Davis, B. E. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol. 118, 551–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Katial, R. K. & Covar, R. A. Bronchoprovocation testing in asthma. Immunol. Allergy Clin. North Am. 32, 413–431 (2012).

    Article  PubMed  Google Scholar 

  77. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Komai, M. et al. Role of Th2 responses in the development of allergen-induced airway remodelling in a murine model of allergic asthma. Br. J. Pharmacol. 138, 912–920 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu, Z. et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103, 779–788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chu, H. W. et al. Collagen deposition in large airways may not differentiate severe asthma from milder forms of the disease. Am. J. Respir. Crit. Care Med. 158, 1936–1944 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Kanoh, S., Tanabe, T. & Rubin, B. K. IL-13-induced MUC5AC production and goblet cell differentiation is steroid resistant in human airway cells. Clin. Exp. Allergy 41, 1747–1756 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Kurowska-Stolarska, M. et al. IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J. Immunol. 181, 4780–4790 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Li, Y. L. et al. Thymic stromal lymphopoietin promotes lung inflammation through activation of dendritic cells. J. Asthma 47, 117–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, G. R. & Flavell, R. A. Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. Int. Immunol. 16, 1155–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Zheng, T. et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J. Invest. Dermatol. 129, 742–751 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Rankin, J. A. et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl Acad. Sci. USA 93, 7821–7825 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan, L. S., Robinson, N. & Xu, L. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J. Invest. Dermatol. 117, 977–983 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Buttner, C., Lun, A., Splettstoesser, T., Kunkel, G. & Renz, H. Monoclonal anti-interleukin-5 treatment suppresses eosinophil but not T-cell functions. Eur. Respir. J. 21, 799–803 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Flood-Page, P. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176, 1062–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Oldhoff, J. M. et al. No effect of anti-interleukin-5 therapy (mepolizumab) on the atopy patch test in atopic dermatitis patients. Int. Arch. Allergy Immunol. 141, 290–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Barnes, P. J. Cytokine-directed therapies for the treatment of chronic airway diseases. Cytokine Growth Factor Rev. 14, 511–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Oldhoff, J. M. et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Borish, L. C. et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J. Allergy Clin. Immunol. 107, 963–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Borish, L. C. et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 160, 1816–1823 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Gauvreau, G. M. et al. The effects of IL-13 blockade on allergen-induced airway responses in mild atopic asthma. Am. J. Respir. Crit. Care Med. 183, 1007–1014 (2010).

    Article  PubMed  CAS  Google Scholar 

  98. Maes, T., Joos, G. F. & Brusselle, G. G. Targeting interleukin-4 in asthma: lost in translation? Am. J. Respir. Cell. Mol. Biol. 47, 261–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Oh, C. K., Geba, G. P. & Molfino, N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur. Respir. Rev. 19, 46–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat. Med. 9, 47–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E. B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Groves, R. W., Wilbraham, D., Fuller, R. & Longphre, M. Inhibition of IL-4 and IL-13 with an IL-4 mutein (Aeroderm) protects against flares in atopic eczema. J. Invest. Dermatol. 127, S54 (2007).

    Google Scholar 

  103. Corren, J. et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Rα antagonist, in patients with asthma. Am. J. Respir. Crit. Care Med. 181, 788–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Kakkar, T. et al. Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor. Pharm. Res. 28, 2530–2542 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Wenzel, S. E. Asthma: defining of the persistent adult phenotypes. Lancet 368, 804–813 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Haldar, P. et al. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 178, 218–224 (2008).

    Article  PubMed  Google Scholar 

  107. Moore, W. C. et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 181, 315–323 (2010).

    Article  PubMed  Google Scholar 

  108. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009). This is one of two studies demonstrating the efficacy of IL-5 blockade in patients with high numbers of eosinophils in sputum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fahy, J. V. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc. Am. Thorac Soc. 6, 256–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Takayama, G. et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118, 98–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Woodruff, P. G. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009). These authors show that there are two distinct molecular subgroups of asthma, suggesting that some therapeutic targets may only be relevant in subsets of patients with asthma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Ultsch, M. et al. Structural basis of signaling blockade by anti-IL-13 antibody lebrikizumab. J. Mol. Biol. 425, 1330–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Scheerens, H. et al. The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin. Exp. Allergy 44, 38–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011). This study demonstrates the efficacy of anti-IL-13 treatment on lung function and that this therapy is more effective in patients with a biomarker profile of T H 2-type activity.

    Article  CAS  PubMed  Google Scholar 

  118. Noonan, M. et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J. Allergy Clin. Immunol. 132, 567–574.e12 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Wenzel, S. E. et al. Inhaled pitrakinra, an IL-4/IL-13 antagonist, reduced exacerbations in patients with eosinophilic asthma. Eur. Respir. J. 36 (Suppl. 54), 713s (2010).

    Google Scholar 

  120. Juniper, E. F., Svensson, K., Mork, A. C. & Stahl, E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir. Med. 99, 553–558 (2005).

    Article  PubMed  Google Scholar 

  121. Wenzel, S. et al. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368, 2455–2466 (2013). This is a proof-of-concept study demonstrating the efficacy of simultaneous blockade of IL-4 and IL-13 in asthmatics with high numbers of eosinophils in blood.

    Article  CAS  PubMed  Google Scholar 

  122. Wenzel, S. et al. Dupilumab improves lung function and reduces severe exacerbations in uncontrolled asthmatics with baseline eosinophil levels above and below 300 cells/μl. Am. J. Respir. Crit. Care Med. 191, A3632 (2015).

    Google Scholar 

  123. Chase, E. P. & Armstrong, A. W. Advances in management of atopic dermatitis: new therapies and novel uses of existing treatments. Semin. Cutan Med. Surg. 31, 17–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Ong, P. Y. Emerging drugs for atopic dermatitis. Expert Opin. Emerg. Drugs 14, 165–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Radin, A., R. H., Papino-Wood, P., Chaudhry, U. & Hamilton, J. D. First-in-human study of REGN668/SAR231893 (IL-4Rα mAb): safety, tolerability and biomarker results of a randomized, double-blind, placebo-controlled, single ascending dose study in healthy volunteers. J. Allergy Clin. Immunol. 131, SAB158 (2013).

    Article  Google Scholar 

  126. Beck, L. A. et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 371, 130–139 (2014). This publication reports four clinical studies demonstrating that simultaneous blockade of IL-4 and IL-13 leads to clinical efficacy in atopic dermatitis.

    Article  PubMed  CAS  Google Scholar 

  127. Kam, J. C., Szefler, S. J., Surs, W., Sher, E. R. & Leung, D. Y. Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids. J. Immunol. 151, 3460–3466 (1993).

    CAS  PubMed  Google Scholar 

  128. Leung, D. Y. et al. Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptor β. J. Exp. Med. 186, 1567–1574 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hamilton, J. D. et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. 134, 1293–1300 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Fokkens, W. J. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50, 1–12 (2012).

    Article  PubMed  Google Scholar 

  131. Van Zele, T. et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J. Allergy Clin. Immunol. 125, 1069–1076.e4 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Pinto, J. M. et al. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology 48, 318–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Gevaert, P. et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J. Allergy Clin. Immunol. 118, 1133–1141 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Bachert, C. et al. Dupilumab in chronic sinusitis with nasal polyposis, with and without asthma. EAACI Online Library [online], (2015).

    Google Scholar 

  135. Stalder, J. F. & Taïeb, A. Severity scoring of atopic dermatitis: the SCORAD index. Consensus report of the European Task Force on Atopic Dermatitis. Dermatology 186, 23–31 (1993).

    Article  Google Scholar 

  136. Haeck, I. M. et al. Moderate correlation between quality of life and disease activity in adult patients with atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 26, 236–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Hanifin, J. M. et al. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. Exp. Dermatol. 10, 11–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Barbier, N. et al. Validation of the Eczema Area and Severity Index for atopic dermatitis in a cohort of 1550 patients from the pimecrolimus cream 1% randomized controlled clinical trials programme. Br. J. Dermatol. 150, 96–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Phan, N. Q. et al. Assessment of pruritus intensity: prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta Derm. Venereol. 92, 502–507 (2012).

    Article  PubMed  Google Scholar 

  140. Berger, W. E. et al. Efficacy and safety evaluation of ciclesonide in subjects with mild-to-moderate asthma not currently using inhaled corticosteroids. Allergy Asthma Proc. 30, 304–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Noonan, M. J. et al. Montelukast, a potent leukotriene receptor antagonist, causes dose-related improvements in chronic asthma. Eur. Respir. J. 11, 1232–1239 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Cockcroft, D. W. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 138, 18S–24S (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Juniper, E. F., Bousquet, J., Abetz, L. & Bateman, E. D. Identifying 'well-controlled' and 'not well-controlled' asthma using the Asthma Control Questionnaire. Respir. Med. 100, 616–621 (2006).

    Article  PubMed  Google Scholar 

  144. Juniper, E. F., O'Byrne, P. M., Guyatt, G. H., Ferrie, P. J. & King, D. R. Development and validation of a questionnaire to measure asthma control. Eur. Respir. J. 14, 902–907 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention (Global Initiative for Asthma, 2015).

  146. Diamant, Z., Boot, D., Kamerling, I. & Bjermer, L. Methods used in clinical development of novel anti-asthma therapies. Respir. Med. 102, 332–338 (2008).

    Article  PubMed  Google Scholar 

  147. Kaiser, J. Medical Officer's Efficacy Review, Genentech, Omalizumab BLA STN 103976/0. US Food and Drug Administration [online], (2003).

    Google Scholar 

  148. Gevaert, P. et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J. Allergy Clin. Immunol. 128, 989–995.e8 (2011). This clinical study shows that anti-IL-5 treatment is effective in reducing nasal polyps after two single intravenous injections of mepolizumab.

    Article  CAS  PubMed  Google Scholar 

  149. Groves, R., Wilbrahams, D., Fuller, R. & Longphre, M. Inhibition of IL-4 and IL-13 with an IL-4 mutein (Aeroderm) protects against flares in atopic eczema. J. Invest. Dermatol. 127 (Suppl. 1s), S54 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors thank W. Brooks, J. Orengo, A. Rahmani and D. Gibson from Regeneron Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namita A. Gandhi.

Ethics declarations

Competing interests

N.A.G., B.L.B., N.M.G., N.S. and G.D.Y. are employees of and shareholders of Regeneron Pharmaceuticals. G.P. is an employee and shareholder of Sanofi.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, N., Bennett, B., Graham, N. et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 15, 35–50 (2016). https://doi.org/10.1038/nrd4624

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4624

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research