Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mining the Wnt pathway for cancer therapeutics

A Corrigendum to this article was published on 01 March 2007

Key Points

  • Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract.

  • Blocking this aberrant Wnt pathway activity in cancer cell lines efficiently inhibits their growth. Drugs designed to achieve this in the clinic are therefore predicted to be effective cancer therapeutics.

  • Long-term use of conventional non-steroidal anti-inflammatory drugs (NSAIDS) including aspirin might reduce the risk of developing some forms of cancers, including those driven by aberrant Wnt signalling activity. Studies using cancer cell lines and mouse models of colon cancer indicate that these NSAIDS might partially block cancer cell growth by reducing aberrant Wnt signalling activity.

  • Vitamins A and D derivatives are thought to have anticancer properties. This might be partly attributed to reduction of aberrant Wnt signalling in cancer cells through poorly defined mechanisms that include activation of nuclear receptors capable of reducing Tcf–β-catenin complex formation.

  • Preliminary studies indicate that antibodies specific for Wnt pathway components such as Wnt ligands or Frizzled receptors may effectively inhibit aberrant Wnt signalling in some Wnt-addicted cancers.

  • Preliminary results indicate that viral-based strategies targeting cancers with constitutive Wnt signalling have potential as effective cancer therapies. Strategies include generating oncolytic viruses that selectively replicate and kill cancer cells with high levels of Wnt signalling, and designing viruses that selectively express cytotoxic genes in these cancer cells.

  • High-throughput screening and structure-based design programs have identified small-molecule compounds capable of inhibiting aberrant Wnt signalling activity in cancer cells by blocking the formation of key protein complexes such as Tcf–β-catenin. Future challenges will be to improve on the selectivity and in vivo efficacy of these small-molecule inhibitors.

  • Identification of the Tcf–β-catenin target gene program inappropriately activated in Wnt-driven cancers should facilitate selection of novel targets for therapeutic antibodies or small-molecule inhibitors.

Abstract

Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics designed to achieve this in cancer patients. Here we provide an overview of the promise and pitfalls of current drug development strategies striving to inhibit the Wnt pathway and present new opportunities for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the Wnt signalling pathway.
Figure 2: Routes to aberrant activation of Wnt signalling in cancer cells.
Figure 3: Accumulation of β-catenin in adenomas.
Figure 4: A cell-based assay for screening compound libraries for small-molecule inhibitors of the Wnt pathway.
Figure 5: Secondary assays for evaluating potential Wnt inhibitors identified in primary high-throughput screens.

Similar content being viewed by others

References

  1. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002). Reports the identification of the Tcf target gene program that is inappropriately activated in colon cancer cells displaying aberrant Wnt signalling activity. Together with reference 1 this also conclusively demonstrates that blockade of this Wnt signalling activity effectively inhibits cancer cell growth in vitro.

    Article  CAS  PubMed  Google Scholar 

  3. Van der Flier, L. et al. The intestinal Wnt signature. Gastroenterology (in the press).

  4. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991). References 5 and 6 provide the first evidence of a causal link between mutations of the APC gene and inherited/spontaneous intestinal polyp formation and colon cancer.

    Article  CAS  PubMed  Google Scholar 

  7. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997). This paper is the first demonstration of constitutive Wnt signalling activity in colon cancer cells as a result of mutations in APC. References 8 and 51 identify similar constitutive Wnt signalling activity in colon cancers and melanomas harbouring activating mutations in β-catenin.

    Article  CAS  PubMed  Google Scholar 

  8. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990). Together with reference 10 this paper describes the generation of the APCmin mouse model, which has become the standard rodent colon cancer model used in academic research in the Wnt field and for evaluating potential colon cancer therapeutics.

    Article  CAS  PubMed  Google Scholar 

  10. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Miyaki, M. et al. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011–3020 (1994).

    CAS  PubMed  Google Scholar 

  12. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  15. Lammi, L. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, W. et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nature Genet. 26, 146–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Caldwell, G. M. et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nature Genet. 36, 417–422 (2004). Discovery of a causal link between epigenetic inactivation of WNT antagonists (SFRP) and constitutive Wnt signalling activity in colon cancers. Indicates that restoration of SFRP expression alone can reduce Wnt signalling activity sufficiently to block colon cancer cell growth. This would support development of Wnt/Fzd antibodies effecting blockade of this Wnt signalling activity in colon cancers.

    Article  CAS  PubMed  Google Scholar 

  19. He, B. et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24, 3054–3058 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, T. A., Wang, Z., Dang, L. H., Vogelstein, B. & Kinzler, K. W. Targeted inactivation of CTNNB1 reveals unexpected effects of β-catenin mutation. Proc. Natl Acad. Sci. USA 99, 8265–8270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahmen, R. P. et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 61, 7039–7043 (2001).

    CAS  PubMed  Google Scholar 

  22. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genet. 24, 245–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Fukui, T. et al. Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene 24, 6323–6327 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, A. Y. et al. Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23, 6672–6676 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, T. H. et al. CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res. 66, 653–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. To, K. F. et al. Alterations of frizzled (FzE3) and secreted frizzled related protein (hsFRP) expression in gastric cancer. Life Sci. 70, 483–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Ugolini, F. et al. WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20, 5810–5817 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wong, S. C. et al. Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J. Pathol. 196, 145–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Zou, H. et al. Aberrant methylation of secreted frizzled-related protein genes in esophageal adenocarcinoma and Barrett's esophagus. Int. J. Cancer 116, 584–591 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Ai, L. et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27, 1341–1348 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Batra, S. et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem. Biophys. Res. Commun. 342, 1228–1232 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mazieres, J. et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res. 64, 4717–4720 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Urakami, S. et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/ β-catenin signaling pathway. Clin. Cancer Res. 12, 383–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wissmann, C. et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol. 201, 204–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Clement, G., Braunschweig, R., Pasquier, N., Bosman, F. T. & Benhattar, J. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett's esophagus. Oncogene 25, 3084–3092 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. He, B. et al. Wnt signaling in stem cells and non-small-cell lung cancer. Clin. Lung Cancer 7, 54–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Katoh, M. Expression and regulation of WNT1 in human cancer: up-regulation of WNT1 by β-estradiol in MCF-7 cells. Int. J. Oncol. 22, 209–212 (2003).

    CAS  PubMed  Google Scholar 

  38. Katoh, M., Kirikoshi, H., Terasaki, H. & Shiokawa, K. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT–β-catenin–TCF signaling pathway. Biochem. Biophys. Res. Commun. 289, 1093–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Mazieres, J. et al. Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int. J. Cancer 117, 326–332 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Milovanovic, T. et al. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int. J. Oncol. 25, 1337–1342 (2004).

    CAS  PubMed  Google Scholar 

  41. Miyaoka, T., Seno, H. & Ishino, H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res 38, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Rhee, C. S. et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21, 6598–6605 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Sen, M., Chamorro, M., Reifert, J., Corr, M. & Carson, D. A. Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum. 44, 772–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Sen, M. et al. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 97, 2791–2796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. You, L. et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23, 6170–6174 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. You, L. et al. Wnt-1 signal as a potential cancer therapeutic target. Drug News Perspect. 19, 27–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kirikoshi, H., Sekihara, H. & Katoh, M. Up-regulation of Frizzled-7 (FZD7) in human gastric cancer. Int. J. Oncol. 19, 111–115 (2001).

    CAS  PubMed  Google Scholar 

  48. Okino, K. et al. Up-regulation and overproduction of DVL-1, the human counterpart of the Drosophila dishevelled gene, in cervical squamous cell carcinoma. Oncol. Rep. 10, 1219–1223 (2003).

    CAS  PubMed  Google Scholar 

  49. Uematsu, K. et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22, 7218–7221 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Uematsu, K. et al. Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of β-catenin. Cancer Res. 63, 4547–4551 (2003).

    CAS  PubMed  Google Scholar 

  51. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. DuBois, R. N., Giardiello, F. M. & Smalley, W. E. Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol. Clin. North Am. 25, 773–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Giovannucci, E. et al. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann. Intern. Med. 121, 241–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Thun, M. J. Aspirin and gastrointestinal cancer. Adv. Exp. Med. Biol. 400A, 395–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Smalley, W. E. & DuBois, R. N. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv. Pharmacol. 39, 1–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Thun, M. J., Henley, S. J. & Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl Cancer Inst. 94, 252–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Maier, T. J., Schilling, K., Schmidt, R., Geisslinger, G. & Grosch, S. Cyclooxygenase-2 (COX-2)-dependent and-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochem. Pharmacol. 67, 1469–1478 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, X., Morham, S. G., Langenbach, R. & Young, D. A. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J. Exp. Med. 190, 451–459 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith, M. L., Hawcroft, G. & Hull, M. A. The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. Eur. J. Cancer 36, 664–674 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Giardiello, F. M. et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Koehne, C. H. & Dubois, R. N. COX-2 inhibition and colorectal cancer. Semin. Oncol. 31, 12–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Jolly, K., Cheng, K. K. & Langman, M. J. NSAIDs and gastrointestinal cancer prevention. Drugs 62, 945–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, K. et al. Regional response leading to tumorigenesis after sulindac in small and large intestine of mice with Apc mutations. Carcinogenesis 24, 605–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Mahmoud, N. N. et al. The sulfide metabolite of sulindac prevents tumors and restores enterocyte apoptosis in a murine model of familial adenomatous polyposis. Carcinogenesis 19, 87–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Phillips, R. K. et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50, 857–860 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Labayle, D. et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101, 635–639 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Boon, E. M. et al. Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br. J. Cancer 90, 224–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shao, J., Jung, C., Liu, C. & Sheng, H. Prostaglandin E2 stimulates the β-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem. 280, 26565–26572 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs–axin–β-catenin signaling axis. Science 310, 1504–1510 (2005). Reports elevated prostaglandin E2 levels found to stimulate the Wnt pathway in colon cancers by interfering with degradation of β-catenin. Supports the use of NSAIDS and selective COX inhibitors for reducing COX-induced prostaglandin levels in Wnt-driven cancers.

    Article  CAS  PubMed  Google Scholar 

  71. Maier, T. J., Janssen, A., Schmidt, R., Geisslinger, G. & Grosch, S. Targeting the β-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB J. 19, 1353–1355 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Solomon, D. H. et al. Cardiovascular outcomes in new users of coxibs and nonsteroidal antiinflammatory drugs: high-risk subgroups and time course of risk. Arthritis Rheum. 54, 1378–1389 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Williams, J. L. et al. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 61, 3285–3289 (2001).

    CAS  PubMed  Google Scholar 

  75. Rigas, B. & Williams, J. L. NO-releasing NSAIDs and colon cancer chemoprevention: a promising novel approach (Review). Int. J. Oncol. 20, 885–890 (2002).

    CAS  PubMed  Google Scholar 

  76. Fiorucci, S. & Del Soldato, P. NO-aspirin: mechanism of action and gastrointestinal safety. Dig. Liver Dis. 35 (Suppl. 2), S9–S19 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Fiorucci, S. et al. Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterology 124, 600–607 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Williams, J. L. et al. NO-donating aspirin inhibits intestinal carcinogenesis in Min (APC(Min/+)) mice. Biochem. Biophys. Res. Commun. 313, 784–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gao, J., Liu, X. & Rigas, B. Nitric oxide-donating aspirin induces apoptosis in human colon cancer cells through induction of oxidative stress. Proc. Natl Acad. Sci. USA 102, 17207–17212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nath, N., Kashfi, K., Chen, J. & Rigas, B. Nitric oxide-donating aspirin inhibits β-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear β-catenin-TCF association. Proc. Natl Acad. Sci. USA 100, 12584–12589 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Soprano, D. R., Qin, P. & Soprano, K. J. Retinoic acid receptors and cancers. Annu. Rev. Nutr. 24, 201–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Shah, S., Hecht, A., Pestell, R. & Byers, S. W. Trans-repression of β-catenin activity by nuclear receptors. J. Biol. Chem. 278, 48137–48145 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Shah, S., Pishvaian, M. J., Easwaran, V., Brown, P. H. & Byers, S. W. The role of cadherin, β-catenin, and AP-1 in retinoid-regulated carcinoma cell differentiation and proliferation. J. Biol. Chem. 277, 25313–25322 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Xiao, J. H. et al. Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway. J. Biol. Chem. 278, 29954–29962 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Hoosein, N. M. et al. Comparison of the antiproliferative effects of transforming growth factor-β, N,N-dimethylformamide and retinoic acid on a human colon carcinoma cell line. Cancer Lett. 40, 219–232 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. O'Dwyer, P. J., Ravikumar, T. S., McCabe, D. P. & Steele, G., Jr. Effect of 13-cis-retinoic acid on tumor prevention, tumor growth, and metastasis in experimental colon cancer. J. Surg. Res. 43, 550–557 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Mollersen, L., Paulsen, J. E., Olstorn, H. B., Knutsen, H. K. & Alexander, J. Dietary retinoic acid supplementation stimulates intestinal tumour formation and growth in multiple intestinal neoplasia (Min)/+ mice. Carcinogenesis 25, 149–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Giovannucci, E., and Platz, E. A. Vitamin D, (Elsevier Academic Press, Burlington, MA, 2005).

    Google Scholar 

  89. Akhter, J., Chen, X., Bowrey, P., Bolton, E. J. & Morris, D. L. Vitamin D3 analog, EB1089, inhibits growth of subcutaneous xenografts of the human colon cancer cell line, LoVo, in a nude mouse model. Dis. Colon Rectum 40, 317–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. VanWeelden, K., Flanagan, L., Binderup, L., Tenniswood, M. & Welsh, J. Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin D3 analog, EB1089. Endocrinology 139, 2102–2110 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Harris, D. M. & Go, V. L. Vitamin D and colon carcinogenesis. J. Nutr. 134, 3463S–3471S (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Palmer, H. G. et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154, 369–387 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shah, S. et al. The molecular basis of vitamin D receptor and β-catenin crossregulation. Mol. Cell 21, 799–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Binderup E., C. M. J., Binderup L. Synthesis and biological activity of 1-hydroxylated vitamin D analogs with polyunsaturated side chains. Vitamin D, Gene Regulation, Structure-Function Analysis and Clinical Application, 192–193 (1991).

    Google Scholar 

  95. Vandewalle, B., Adenis, A., Hornez, L., Revillion, F. & Lefebvre, J. 1, 25-dihydroxyvitamin D3 receptors in normal and malignant human colorectal tissues. Cancer Lett. 86, 67–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Kallay, E. et al. Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem. Toxicol. 40, 1191–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. He, B. et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6, 7–14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Holcombe, R. F. et al. Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol. Pathol. 55, 220–226 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vider, B. Z. et al. Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 12, 153–158 (1996).

    CAS  PubMed  Google Scholar 

  100. Smith, K. et al. Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br. J. Cancer 81, 496–502 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. You, L. et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 64, 5385–5389 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Taketo, M. M. Shutting down Wnt signal-activated cancer. Nature Genet. 36, 320–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Berg, T. et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 99, 3830–3835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Graham, T. A., Ferkey, D. M., Mao, F., Kimelman, D. & Xu, W. Tcf4 can specifically recognize β-catenin using alternative conformations. Nature Struct. Biol. 8, 1048–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Graham, T. A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. Crystal structure of a β-catenin/Tcf complex. Cell 103, 885–896 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Poy, F., Lepourcelet, M., Shivdasani, R. A. & Eck, M. J. Structure of a human Tcf4- β-catenin complex. Nature Struct. Biol. 8, 1053–1057 (2001). References 106 and 107 describe the first crystal structures of Tcf–β-catenin complexes. This information facilitated structure-assisted (rational) drug design programs developing small-molecule inhibitors of the Tcf–β-catenin complex.

    Article  CAS  PubMed  Google Scholar 

  108. Fasolini, M. et al. Hot spots in Tcf4 for the interaction with β-catenin. J. Biol. Chem. 278, 21092–21098 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Knapp, S. et al. Thermodynamics of the high-affinity interaction of TCF4 with β-catenin. J. Mol. Biol. 306, 1179–1189 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Omer, C. A., Miller, P. J., Diehl, R. E. & Kral, A. M. Identification of Tcf4 residues involved in high-affinity β-catenin binding. Biochem. Biophys. Res. Commun. 256, 584–590 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. von Kries, J. P. et al. Hot spots in β-catenin for interactions with LEF-1, conductin and APC. Nature Struct. Biol. 7, 800–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Huber, A. H. & Weis, W. I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001). Describes the crystal structure of the β-catenin–E-cadherin complex and draws comparisons between this and other β-catenin–partner complexes. Together with reference 113, which describes the crystal structure of the β-catenin–APC complex, this provides vital information in the quest to develop specific inhibitors of the Tcf–β-catenin complex.

    Article  CAS  PubMed  Google Scholar 

  113. Xing, Y. et al. Crystal structure of a β-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol. Cell 15, 523–533 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996). Seminal finding of a functional interaction between XTcf3 and β-catenin (together with reference 170) to form an active transcription factor complex driving body axis specification in frogs embryos.

    Article  CAS  PubMed  Google Scholar 

  115. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5, 91–102 (2004). Identification of natural small-molecule inhibitors of Tcf–β-catenin complexes using an ELISA-based screening assay. Although not completely specific for Tcf–β-catenin complexes, these inhibitors do support the continued use of high-throughput screening and rational design strategies for identifying small-molecule inhibitors of protein complexes in the Wnt pathway.

    Article  CAS  PubMed  Google Scholar 

  116. Trosset, J. Y. et al. Inhibition of protein-protein interactions: the discovery of druglike β-catenin inhibitors by combining virtual and biophysical screening. Proteins 64, 60–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F. & Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J. 19, 1839–1850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hoffmans, R., Stadeli, R. & Basler, K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/β-catenin. Curr. Biol. 15, 1207–1211 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear β-catenin-TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Stadeli, R. & Basler, K. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins. Mech. Dev. 122, 1171–1182 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Emami, K. H. et al. A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA 101, 12682–12687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hecht, A., Litterst, C. M., Huber, O. & Kemler, R. Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J. Biol. Chem. 274, 18017–18025 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, S., Xu, X., Hecht, A. & Boyer, T. G. Mediator is a transducer of Wnt/β-catenin signaling. J. Biol. Chem. 281, 14066–14075 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Mosimann, C., Hausmann, G. & Basler, K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with β-catenin/Armadillo. Cell 125, 327–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. He, X. & Axelrod, J. D. A WNTer wonderland in Snowbird. Development 133, 2597–2603 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Shan, J., Shi, D. L., Wang, J. & Zheng, J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 44, 15495–15503 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Cong, F., Schweizer, L. & Varmus, H. Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131, 5103–5115 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Wong, H. C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, L., Gao, X., Wen, J., Ning, Y. & Chen, Y. G. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J. Biol. Chem. 281, 8607–8612 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Kaplan, J. M. Adenovirus-based cancer gene therapy. Curr. Gene Ther. 5, 595–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Chen, R. H. & McCormick, F. Selective targeting to the hyperactive β-catenin/T-cell factor pathway in colon cancer cells. Cancer Res. 61, 4445–4449 (2001).

    CAS  PubMed  Google Scholar 

  134. Lipinski, K. S. et al. Optimization of a synthetic β-catenin-dependent promoter for tumor-specific cancer Gene Ther.apy. Mol Ther 10, 150–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Kwong, K. Y., Zou, Y., Day, C. P. & Hung, M. C. The suppression of colon cancer cell growth in nude mice by targeting β-catenin/TCF pathway. Oncogene 21, 8340–8346 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Brunori, M., Malerba, M., Kashiwazaki, H. & Iggo, R. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J. Virol. 75, 2857–2865 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fuerer, C. & Iggo, R. Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther. 9, 270–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Toth, K. et al. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res. 64, 3638–3644 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Fuerer, C. & Iggo, R. 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther. 11, 142–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Lukashev, A. N., Fuerer, C., Chen, M. J., Searle, P. & Iggo, R. Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Ther. 16, 1473–1483 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, J. P., Chen, L., Leek, J. & Lin, C. Antisense c-myc fragments induce normal differentiation cycles in HL-60 cells. Eur. J. Clin. Invest. 36, 49–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Iversen, P. L., Arora, V., Acker, A. J., Mason, D. H. & Devi, G. R. Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin. Cancer Res. 9, 2510–2519 (2003).

    CAS  PubMed  Google Scholar 

  144. Arango, D., Corner, G. A., Wadler, S., Catalano, P. J. & Augenlicht, L. H. c-myc/p53 interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo. Cancer Res. 61, 4910–4915 (2001).

    CAS  PubMed  Google Scholar 

  145. Arango, D. et al. c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. Br. J. Cancer 89, 1757–1765 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bressin, C. et al. Decrease in c-Myc activity enhances cancer cell sensitivity to vinblastine. Anticancer Drugs 17, 181–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Sansom, O. J. et al. Cyclin D1 is not an immediate target of β-catenin following Apc loss in the intestine. J. Biol. Chem. 280, 28463–28467 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Whittaker, S. R., Walton, M. I., Garrett, M. D. & Workman, P. The Cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res. 64, 262–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. van Es, J. H. & Clevers, H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol. Med. 11, 496–502 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Terasaki, H., Saitoh, T., Shiokawa, K. & Katoh, M. Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT–β-catenin–TCF signaling pathway. Int. J. Mol. Med. 9, 107–112 (2002).

    CAS  PubMed  Google Scholar 

  152. Nagayama, S. et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene 24, 6201–6212 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Esteller, M. et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 60, 4366–4371 (2000).

    CAS  PubMed  Google Scholar 

  154. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Ishizaki, Y. et al. Immunohistochemical analysis and mutational analyses of β-catenin, Axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol. 24, 1077–1083 (2004).

    CAS  PubMed  Google Scholar 

  157. Taniguchi, K. et al. Mutational spectrum of β-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21, 4863–4871 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Koinuma, K. et al. Epigenetic silencing of AXIN2 in colorectal carcinoma with microsatellite instability. Oncogene 25, 139–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Winston, J. T. et al. The SCFβ–TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and β-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Davidson, G. et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  170. Daniels, D. L. & Weis, W. I. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature Struct. Mol. Biol. 12, 364–371 (2005).

    Article  CAS  Google Scholar 

  171. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107, 1183–1188 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Turini, M. E. & DuBois, R. N. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53, 35–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Takeda, H. et al. Cooperation of cyclooxygenase 1 and cyclooxygenase 2 in intestinal polyposis. Cancer Res. 63, 4872–4877 (2003).

    CAS  PubMed  Google Scholar 

  175. Oshima, M. et al. Suppression of intestinal polyposis in Apc δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  176. Chulada, P. C. et al. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res. 60, 4705–4708 (2000).

    CAS  PubMed  Google Scholar 

  177. Wang, D. et al. Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor δ. Cancer Cell 6, 285–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Germann, A., Dihlmann, S., Hergenhahn, M., Doeberitz, M. K. & Koesters, R. Expression profiling of CC531 colon carcinoma cells reveals similar regulation of β-catenin target genes by both butyrate and aspirin. Int. J. Cancer 106, 187–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Dihlmann, S., Siermann, A. & von Knebel Doeberitz, M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate β-catenin/TCF-4 signaling. Oncogene 20, 645–653 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Mahmoud, N. N. et al. Aspirin prevents tumors in a murine model of familial adenomatous polyposis. Surgery 124, 225–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Dihlmann, S., Klein, S. & Doeberitz Mv, M. K. Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol. Cancer Ther. 2, 509–516 (2003).

    CAS  PubMed  Google Scholar 

  182. Winter, C. A., Risley, E. A. & Nuss, G. W. Anti-inflammatory and antipyretic activities of indomethacin, 1-(P-Chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. J. Pharmacol. Exp. Ther. 141, 369–376 (1963).

    CAS  PubMed  Google Scholar 

  183. Brown, W. A., Skinner, S. A., Malcontenti-Wilson, C., Vogiagis, D. & O'Brien, P. E. Non-steroidal anti-inflammatory drugs with activity against either cyclooxygenase 1 or cyclooxygenase 2 inhibit colorectal cancer in a DMH rodent model by inducing apoptosis and inhibiting cell proliferation. Gut 48, 660–666 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brown, W. A., Skinner, S. A., Vogiagis, D. & O'Brien, P. E. Inhibition of β-catenin translocation in rodent colorectal tumors: a novel explanation for the protective effect of nonsteroidal antiinflammatory drugs in colorectal cancer. Dig. Dis. Sci. 46, 2314–2321 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Hawcroft, G. et al. Indomethacin induces differential expression of β-catenin, γ-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis 23, 107–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Hirata, K., Itoh, H. & Ohsato, K. Regression of rectal polyps by indomethacin suppository in familial adenomatous polyposis. Report of two cases. Dis. Colon Rectum 37, 943–946 (1994).

    Article  CAS  PubMed  Google Scholar 

  187. Hirota, C. et al. Effect of indomethacin suppositories on rectal polyposis in patients with familial adenomatous polyposis. Cancer 78, 1660–1665 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. Chiu, C. H., McEntee, M. F. & Whelan, J. Discordant effect of aspirin and indomethacin on intestinal tumor burden in Apc(Min/+)mice. Prostaglandins Leukot. Essent. Fatty Acids 62, 269–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Gardner, S. H., Hawcroft, G. & Hull, M. A. Effect of nonsteroidal anti-inflammatory drugs on β-catenin protein levels and catenin-related transcription in human colorectal cancer cells. Br. J. Cancer 91, 153–163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McEntee, M. F., Chiu, C. H. & Whelan, J. Relationship of β-catenin and Bcl-2 expression to sulindac-induced regression of intestinal tumors in Min mice. Carcinogenesis 20, 635–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Li, H. et al. Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve β-catenin and cyclin D1 down-regulation. Biochem. Pharmacol. 64, 1325–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Rice, P. L. et al. Sulindac metabolites induce caspase- and proteasome-dependent degradation of β-catenin protein in human colon cancer cells. Mol. Cancer Ther. 2, 885–892 (2003).

    CAS  PubMed  Google Scholar 

  193. Piazza, G. A. et al. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. 57, 2909–2915 (1997).

    CAS  PubMed  Google Scholar 

  194. Thompson, W. J. et al. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res. 60, 3338–3342 (2000).

    CAS  PubMed  Google Scholar 

  195. Zhu, B., Vemavarapu, L., Thompson, W. J. & Strada, S. J. Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J. Cell. Biochem. 94, 336–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Chang, W. C. et al. Sulindac sulfone is most effective in modulating β-catenin-mediated transcription in cells with mutant APC. Ann. NY Acad. Sci. 1059, 41–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Li, H., Pamukcu, R. & Thompson, W. J. β-catenin signaling: therapeutic strategies in oncology. Cancer Biol. Ther. 1, 621–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Stoner, G. D. et al. Sulindac sulfone induced regression of rectal polyps in patients with familial adenomatous polyposis. Adv. Exp. Med. Biol. 470, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. van Stolk, R. et al. Phase I trial of exisulind (sulindac sulfone, FGN-1) as a chemopreventive agent in patients with familial adenomatous polyposis. Clin. Cancer Res. 6, 78–89 (2000).

    CAS  PubMed  Google Scholar 

  200. Arber, N. et al. Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study. Gut 55, 367–373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. van Es for critical reading of the manuscript and M. van den Born for providing the figure of β-catenin expression in adenoma tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Familial adenomatous polyposis

FURTHER INFORMATION

Genetics Company Wnt Inhibitors

Wnt Homepage

Wnt Target Gene Overview

Glossary

Adenoma

An ordinarily benign neoplasm of epithelial tissue in which the tumour cells form glands or gland-like structures.

Carcinoma

The final, invasive stage of evolution of an epithelial cancer.

APCmin mouse

The APCmin (multiple intestinal neoplasia) mouse model of human familial adenomatous polyposis carries a germline mutation in the APC gene that drives the formation of multiple intestinal tumours.

Epigenetic

Any heritable influence (in the progeny of cells or of individuals) on chromosome or gene function that is not accompanied by a change in DNA sequence.

Apoptosis

Programmed cell death.

Isothermal titration μ-calorimetry

Thermodynamic technique for characterizing biomolecular interactions. This measures the heat absorbed or generated when two substances bind, enabling accurate determination of binding affinities and stoichiometries.

Familial adenomatous polyposis

Genetic disorder that is characterized by an increased predisposition to colorectal cancer, associated with germ-line mutations of the APC gene.

Oncolytic virus

Viruses engineered to selectively replicate in and kill cancer cells.

Prodrug

A pharmacologically inactive compound that is converted to the active form of the drug by endogenous enzymes or metabolism. It is generally designed to overcome problems associated with stability, toxicity, lack of specificity or limited (oral) bioavailability.

Antisense

DNA or RNA that is manipulated to be complementary to a target mRNA. Antisense techniques are used to inhibit the expression of genes in a sequence-specific fashion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, N., Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5, 997–1014 (2006). https://doi.org/10.1038/nrd2154

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing