Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endothelin axis: emerging role in cancer

This article has been updated

Key Points

  • Studies have demonstrated the role of the ET axis in a wide variety of diseases, including cancer.

  • ETA-receptor activation by ET-1 contributes to tumour growth and progression, inducing cell proliferation, survival, angiogenesis and metastatic spread, indicating that ETA-receptor blockade might improve cancer treatment.

  • In Phase I and II clinical studies, ETA-receptor antagonists can be administered orally, once a day, and have a favourable tolerability profile.

  • Preliminary data from clinical trials are promising.

  • Studies are underway to better define the role and ET-receptor antagonists in the treatment of malignant diseases.

Abstract

Collectively, the endothelins and their receptors — referred to as the endothelin (ET) axis — have key physiological functions in normal tissue, acting as modulators of vasomotor tone, tissue differentiation, development, cell proliferation and hormone production. Based on new data, the ET axis also functions in the growth and progression of various tumours. Preliminary results from clinical trials, such as those with atrasentan — an ETA-receptor antagonist — in prostate cancer, are encouraging. The place of ET-receptor antagonists in cancer therapy for a range of malignancies merits further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Endothelins and their receptor-mediated functions.
Figure 3: Endothelin-induced signal-transduction pathways.
Figure 4: Endothelin-1 activity in bone remodelling.

Similar content being viewed by others

Change history

  • 03 February 2005

    'a' added to first page numbers for references 40 and 53; acknowledgement added

References

  1. Levin, E. R. Endothelins. N. Engl. J. Med. 333, 356–363 (1995).

    Article  CAS  Google Scholar 

  2. Goldie, R. G. Endothelins in health and disease: an overview. Clin. Exp. Pharmacol. Physiol. 26, 145–148 (1999).

    Article  CAS  Google Scholar 

  3. Walden, P. D., Ittmann, M., Monaco, M. E. & Lepor, H. Endothelin-1 production and agonist activities in cultured prostate-derived cells: implications for regulation of endothelin bioactivity and bioavailability in prostatic hyperplasia. Prostate 34, 241–250 (1998).

    Article  CAS  Google Scholar 

  4. Masaki, T. The endothelin family: an overview. J. Cardiovasc. Pharmacol. 35, S3–S5 (2000).

    Article  CAS  Google Scholar 

  5. Valdenaire, O., Rohrbacher, E. & Mattei, M. G. Organization of the gene encoding the human endothelin-converting enzyme (ECE-1). J. Biol. Chem. 270, 29794–29798 (1995).

    Article  CAS  Google Scholar 

  6. Bagnato, A. & Catt, K. J. Endothelin as autocrine regulators of tumor cell growth. Trends Endocr. Metab. 9, 378–383 (1998).

    Article  CAS  Google Scholar 

  7. Bloch, K. D. et al. Structural organization and chromosomal assignment of the gene encoding endothelin. J. Biol. Chem. 264, 10851–10857 (1989).

    CAS  PubMed  Google Scholar 

  8. Battistini, B., Chailler, P., D'Orleans-Juste, P., Briere, N. & Sirois, P. Growth regulatory properties of endothelins. Peptides 14, 385–399 (1993).

    Article  CAS  Google Scholar 

  9. Nelson, J. B. & Carducci, M. A. The role of the endothelin axis in prostate cancer. Prostate J. 1, 126–130 (1999).

    Article  Google Scholar 

  10. Remuzzi, G., Perico, N. & Benigni, A. New therapeutics that antagonize endothelin: promises and frustrations. Nature Rev. Drug Disc. 1, 986–1000 (2002).

    Article  CAS  Google Scholar 

  11. Pristivishalil, G. & Nelson, J. B. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44, 77–87 (2000).

    Article  Google Scholar 

  12. Opgenorth, T. J. Endothelin receptor antagonism. Adv. Pharmacol. 33, 1–65 (1995).

    Article  CAS  Google Scholar 

  13. Lusher, T. F. & Barton, M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation 102, 2434–2440 (2000).

    Article  Google Scholar 

  14. Clozel, M. Endothelin receptor antagonists: current status and perspectives. J. Cardiovasc. Pharmacol. 35 (Suppl. 2), S65–S68 (2000).

    Article  CAS  Google Scholar 

  15. Today in Cardiology news source. Cardiovascular Drugs in the Pipeline [online], (cited 1 Dec 2002), <www.todayincardiology.com/200301/pipeline.pdf> (2003).

  16. Nelson, J. B. et al. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res. 56, 663–668 (1996).

    CAS  PubMed  Google Scholar 

  17. Daub, H. et al. Role of transactivation of the EGF receptor in signaling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  CAS  Google Scholar 

  18. Vacca, F., Bagnato, A., Catt, K. J. & Tecce, R. Transactivation of the epidermal growth factor receptor in endothelin-1-induced mitogenic signaling in human ovarian carcinoma cells. Cancer Res. 60, 5310–5317 (2000).

    CAS  PubMed  Google Scholar 

  19. Filippatos, G. S. et al. Regulation of apoptosis by vasoactive peptides. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L749–L761 (2001).

    Article  CAS  Google Scholar 

  20. Wu-Wong, J. R., Chiou, W. J., Dickinson, R. & Opgenorth, T. J. Endothelin attenuates apoptosis in human smooth muscle cells. Biochem. J. 328, 733–737 (1997).

    Article  CAS  Google Scholar 

  21. Wu-Wong, J. R., Chiou, W. J. & Wang, J. Extracellular signal-regulated kinases are involved in the antiapoptotic effect of endothelin-1. J. Pharmacol. Exp. Ther. 293, 514–521 (2000).

    CAS  PubMed  Google Scholar 

  22. Shichiri, M., Kato, H., Marumo, F. & Hirata, Y. Endothelin-1 as an autocrine/paracrine apoptosis survival factor for endothelial cells. Hypertension 30, 1198–1203 (1997).

    Article  CAS  Google Scholar 

  23. Eberl, L. P., Egidy, G., Pinet, F. & Juillerat-Jeanneret, L. Endothelin receptor blockade potentiates FasL-induced apoptosis in colon carcinoma cells via the protein kinase C-pathway. J. Cardiovasc. Pharmacol. 36, S354–S356 (2000).

    Article  CAS  Google Scholar 

  24. Eberl, L. P., Valdenaire, O., Saintgiorgio, V., Jeannin, J. F. & Juillerat-Jeanneret, L. Endothelin receptor blockade potentiates FasL-induced apoptosis in rat colon carcinoma cells. Int. J. Cancer 86, 182–187 (2000). ET-1 seems to act as a survival factor against FAS-ligand-induced apoptosis. In vivo , however, mixed ET A /ET B -receptor antagonism did not control tumour progression.

    Article  CAS  Google Scholar 

  25. Nelson, J. B. et al. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 53, 1063–1069 (1999). First in vivo demonstration of the effects of ET-1 and ET A -receptor antagonism in the osteoblastic response.

    Article  CAS  Google Scholar 

  26. Boyce, B. F., Yoneda, T. & Guise, T. A. Factors regulating the growth of metastatic cancer in bone. Endocrine-Related Cancer 6, 333–347 (1999).

    Article  CAS  Google Scholar 

  27. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Rev. Cancer 2, 584–593 (2002).

    Article  CAS  Google Scholar 

  28. Guise, T. A. Molecular mechanisms of osteolytic bone metastases. Cancer 88 (Suppl.), 2892–2898 (2000).

    Article  CAS  Google Scholar 

  29. Chiao, J. W. et al. Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption. Br. J. Cancer 83, 360–365 (2000).

    Article  CAS  Google Scholar 

  30. Salani, D. et al. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am. J. Pathol. 157, 1537–1547 (2000).

    Article  CAS  Google Scholar 

  31. Bek, E. L. & McMillen, M. A. Endothelins are angiogenic. J. Cardiovasc. Pharmacol. 36, S135–S139 (2000).

    Article  CAS  Google Scholar 

  32. Bagnato, A. et al. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 59, 720–727 (1999).

    CAS  PubMed  Google Scholar 

  33. Salani, D. et al. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am. J. Pathol. 157, 1703–1711 (2000).

    Article  CAS  Google Scholar 

  34. Spinella, F., Rosano, L., Di Castro, V., Natali, P. G. & Bagnato, A. Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor 1α in ovarian cancer cells. J. Biol. Chem. 277, 27850–27855 (2002).

    Article  CAS  Google Scholar 

  35. Rosano, L. et al. Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res. 61, 8340–8346 (2001).

    CAS  PubMed  Google Scholar 

  36. Rosano, L. et al. Endothelin-1 promotes proteolytic activity of ovarian carcinoma. Clin. Sci. 103, 306S–309S (2002).

    Article  CAS  Google Scholar 

  37. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med. 1, 944–949 (1995). First description of ET-1 as a potentially important factor in advanced prostate cancer progression, leading to the idea that targeting the endothelin axis might be therapeutic.

    Article  CAS  Google Scholar 

  38. Nelson, J. B. et al. Methylation of the 5′ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res. 57, 35–37 (1997).

    CAS  PubMed  Google Scholar 

  39. Gohji, K. et al. Expression of endothelin receptor A associated with prostate cancer progression. J. Urol. 165, 1033–1036 (2001).

    Article  CAS  Google Scholar 

  40. Nelson, J. B. et al. The endothelin receptor antagonist atrasentan improves the time to clinical progression in hormone refractory prostate cancer patients: a randomized, double-blind, multi-national study. J. Urol. 16, 168a (2001).

    Google Scholar 

  41. Nelson, J. B. et al. Preliminary phase II results using ABT-627, an endothelin-A selective receptor antagonist, in men with symptomatic hormone refractory prostate cancer. J. Urol. 163, 159 (2000).

    Google Scholar 

  42. van der Boon, J. New drug slows prostate-cancer progression. Lancet Oncol. 3, 201 (2002).

    Article  Google Scholar 

  43. Carducci, M. A. et al. Effect of endothelin-A receptor blockade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, Phase II, placebo-controlled trial. J. Clin. Oncol. (in the press).

  44. Bagnato, A. et al. Autocrine actions of endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin. Cancer Res. 1, 1059–1066 (1995). First description of ET-1 production by ovarian carcinoma; ET-1-induced proliferation of ovarian cancer is mediated by the ET A receptor.

    CAS  PubMed  Google Scholar 

  45. Moraitis, S., Langdon, S. P. & Miller, W. R. Endothelin expression and responsiveness in human ovarian carcinoma cell lines. Eur. J. Cancer 33, 661–668 (1997).

    Article  CAS  Google Scholar 

  46. Moraitis, S., Miller, W. R., Smyth, J. F. & Langdon, S. P. Paracrine regulation of ovarian cancer by endothelin. Eur. J. Cancer 35, 1381–1387 (1999).

    Article  CAS  Google Scholar 

  47. Del Bufalo, D. et al. Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol. Pharmacol. 61, 524–532 (2002).

    Article  CAS  Google Scholar 

  48. Giaid, A. et al. Detection of endothelin immunoreactivity and mRNA in pulmonary tumours. J. Pathol. 162, 15–22 (1990).

    Article  CAS  Google Scholar 

  49. Ahmed, S. I., Thompson, J., Coulson, J. M. & Woll, P. J. Studies on the expression of endothelin, its receptor subtypes, and converting enzymes in lung cancer and in human bronchial epithelium. Am. J. Respir. Cell. Mol. Biol. 22, 422–431 (2000).

    Article  CAS  Google Scholar 

  50. Zhao, Y. D. et al. Localization and characterization of endothelin-1 receptor binding in the blood vessels of human pulmonary tumors. J Cardiovasc Pharmacol . 26, S341–S345 (1995).

    Article  CAS  Google Scholar 

  51. Egidy, G. et al. Modulation of human colon tumor–stromal interactions by the endothelin system. Am. J. Pathol. 157, 1863–1874 (2000).

    Article  CAS  Google Scholar 

  52. Asham, E. et al. Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ETA receptor antagonism. Br. J. Cancer 85, 1759–1763 (2001).

    Article  CAS  Google Scholar 

  53. Thevarajah, S., Udan, M. S., Zheng, H., Pfluyg, B. R. & Nelson, J. B. Endothelin axis expression in renal cell carcinoma. J. Urol. 161, 137a (1999).

    Article  Google Scholar 

  54. Venuti, A., Salani, D., Manni, V., Poggiali, F. & Bagnato, A. Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy. FASEB J. 14, 2277–2283 (2000).

    Article  CAS  Google Scholar 

  55. Bagnato, A. et al. Growth inhibition of cervix carcinoma cells in vivo by endothelin A receptor blockade. Cancer Res. 62, 6381–6384 (2002). Complete inhibition of cervical carcinoma growth in vivo with atrasentan treatment alone; antitumour effects were additive in combination with the chemotherapeutic agent paclitaxel.

    CAS  PubMed  Google Scholar 

  56. Pagotto, U. et al. Expression and localization of endothelin-1 and endothelin receptors in human meningiomas. Evidence for a role in tumoral growth. J. Clin. Invest. 96, 2017–2025 (1995).

    Article  CAS  Google Scholar 

  57. Pagotto, U., Arzberger, T., Hopfner, U., Weindl, A. & Stalla, G. K. Cellular localization of endothelin receptor mRNAs (ETA and ETB) in brain tumors and normal human brain. J. Cardiovasc. Pharmacol. 26, S104–S106 (1995).

    Article  CAS  Google Scholar 

  58. Harland, S. P., Kuc, R. E., Pickard, J. D. & Davenport, A. P. Expression of endothelinA receptors in human gliomas and meningiomas, with high affinity for the selective antagonist PD156707. Neurosurgery 43, 890–898 (1998).

    Article  CAS  Google Scholar 

  59. Papandreou, C. N. et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nature Med. 4, 50–57 (1998). First description of the loss of expression and activity of NEP — the enzyme responsible for ET-1 degradation — in advanced prostate cancer.

    Article  CAS  Google Scholar 

  60. Carducci, M. A. et al. Atrasentan, an endothelin-receptor antagonist for refractory adenocarcinomas: safety and pharmacokinetics. J. Clin. Oncol. 20, 2171–2180 (2002). First description of ET A blockade with atrasentan for cancer treatment.

    Article  CAS  Google Scholar 

  61. Salani, D. et al. ABT-627, a potent endothelin receptor A antagonist, inhibits ovarian carcinoma growth in vitro. Clin. Sci. 103, 318S–321S (2002).

    Article  CAS  Google Scholar 

  62. Yamashita, J. et al. A large amount of endothelin-1 is present in human breast cancer tissues. Res. Commun. Chem. Pathol. Pharmacol. 74, 363–369 (1991).

    CAS  PubMed  Google Scholar 

  63. Alanen, K., Deng, D. X. & Chakrabarti, S. Augmented expression of endothelin-1, endothelin-3 and the endothelin-B receptor in breast carcinoma. Histopathology 36, 161–167 (2000).

    Article  CAS  Google Scholar 

  64. Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol. Cancer Ther. 1, 1273–1281 (2002).

    CAS  PubMed  Google Scholar 

  65. Bagnato, A. et al. Endothelin receptor blockade inhibits proliferation of Kaposi's sarcoma cells. Am. J. Pathol. 158, 841–847 (2001).

    Article  CAS  Google Scholar 

  66. Lahav, R., Heffner, G. & Patterson, P. H. An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 96, 11496–11500 (1999). Unlike the other malignancies studied, the ET B receptor seems to be central in melanoma.

    Article  CAS  Google Scholar 

  67. Krum, H. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. N. Engl. J. Med. 338, 784–790 (1998).

    Article  CAS  Google Scholar 

  68. Yohn, J. J. et al. Human melanoma cells express functional endothelin-1 receptors. Biochem. Biophys. Res. Commun. 201, 449–457 (1994).

    Article  CAS  Google Scholar 

  69. Kikuchi, K. et al. Decreased ET(B) receptor expression in human metastatic melanoma cells. Biochem. Biophys. Res. Commun. 219, 734–739 (1996).

    Article  CAS  Google Scholar 

  70. Eberle, J. et al. Downregulation of endothelin B receptor in human melanoma cell lines parallel to differentiation genes. J. Invest. Dermatol. 112, 925–932 (1999).

    Article  CAS  Google Scholar 

  71. Demunter, A., De Wolf-Peeters, C., Degreef, H., Stas, M. & van den Oord, J. J. Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch. 438, 485–491 (2001).

    Article  CAS  Google Scholar 

  72. Nambi, P., Wu, H. L., Lipshutz, D. & Prabhakar, U. Identification and characterization of endothelin receptors on rat osteoblastic osteosarcoma cells: down-regulation by 1,25-dihydroxy-vitamin D3 . Mol. Pharmacol. 47, 266–271 (1995).

    CAS  PubMed  Google Scholar 

  73. Kitagawa, N. et al. A selective endothelin ETA antagonist, BQ-123, inhibits 125I-endothelin-1 (125I-ET-1) binding to human meningiomas and antagonizes ET-1-induced proliferation of meningioma cells. Cell. Mol. Neurobiol. 14, 105–118 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B. is grateful to the Associazione Italiana Ricerca sul Cancro for supporting her work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Nelson.

Related links

Related links

DATABASES

Cancer.gov

breast carcinoma

cervical carcinoma

Kaposi's sarcoma

ovarian cancer

prostate cancer

renal-cell carcinoma

LocusLink

BCL2

EGF

EGFR

ET-1

ET-2

ET-3

ETA

ETB

FASL

FGF1

FGF2

FOS

GRB2

HIF-1α

insulin-like growth factor-1

JUN

MAPK

MMP-2

MYC

NEP

phosphatidylinositol 3-kinase

PKC

platelet-derived growth factor

RAS

SHC

transforming growth factor-β

uPA

VEGF

FURTHER INFORMATION

The Cancer Web Project. The On-Line Medical Dictionary

InteliHealth Medical Dictionary

Kimball's Biology Pages

Glossary

OSTEOBLAST

A bone-forming cell.

VASCULAR RESTENOSIS

A renarrowing or renewed blockage of an artery at the site where previous treatment, such as angioplasty, has already been performed.

BENIGN PROSTATIC HYPERPLASIA

Hyperplasia of the periurethral part of the prostate gland that usually occurs in men over 50 years old and might obstruct urination by constricting the urethra.

FAS LIGAND

Apoptosis antigen ligand is the ligand for FAS. Interaction of FAS with its ligand is crucial in triggering apoptosis in some types of cells.

AKT

A serine/threonine protein kinase.

PROSTATE-SPECIFIC ANTIGEN

(PSA). A serine protease that is secreted into seminal fluid by prostatic epithelial cells and that is found in the serum. Almost exclusively a product of prostate cells, PSA measurement in blood is useful as a tumour marker for the diagnosis of prostate cancer and for monitoring the effectiveness of treatment.

OSTEOCLAST

Large multinucleate cells that are associated with areas of bone resorption.

ALKALINE PHOSPHATASE

An enzyme that is found on the cell surface of osteoblasts and that is used as a serum marker of increased osteoblast activity.

OSTEOCALCIN

A protein constituent of bone; circulating levels are used as a marker of increased bone turnover.

PERICYTE

A cell of the connective tissue that abuts capillaries or other small blood vessels.

ZYMOGEN

An inactive precursor of an enzyme, particularly a proteolytic enzyme.

XENOGRAFT

A surgical graft of tissue or cells from one species to another. In cancer research, most xenografts are human cancer cell lines or human tumours that have been transplanted into immune-deficient rodents.

ADENOCARCINOMA

A malignant tumour of epithelial tissue in which the tumour cells form glands or gland-like structures.

HUMAN PAPILLOMAVIRUS

A virus that causes various human warts, including some that are associated with the development of cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, J., Bagnato, A., Battistini, B. et al. The endothelin axis: emerging role in cancer. Nat Rev Cancer 3, 110–116 (2003). https://doi.org/10.1038/nrc990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing