Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear factor-κB inhibitors as sensitizers to anticancer drugs

Key Points

  • Many anticancer agents induce nuclear factor-κB (NF-κB) nuclear translocation and activation of its target genes, which impinge on cellular resistance to anticancer agents.

  • Many malignant tumours display constitutive NF-κB activation that allows malignant cells to escape apoptosis.

  • NF-κB inhibition prevents tumour resistance to chemotherapeutic agents, so development of NF-κB inhibitors could increase the efficacy of many anticancer agents.

  • Several NF-κB inhibitors, such as proteasome inhibitors, BAY 11-7085, BAY 11-7082, soy isoflavone genistein, parthenolide, CHS 828, flavopiridol and gliotoxin, enhance the cytotoxic effect of anticancer agents.

  • It has also been demonstrated that steroids and non-steroidal anti-inflammatory drugs, such as cyclooxygenase-2 inhibitors, block NF-κB activation.

Abstract

The cytotoxicity of chemotherapeutic agents is attributed to apoptosis. Acquired resistance to the effects of chemotherapy has emerged as a significant impediment to effective cancer therapy. One feature that cytotoxic treatments of cancer have in common is their activation of the transcription factor nuclear factor-κB (NF-κB), which regulates cell survival. NF-κB activation suppresses the apoptotic potential of chemotherapeutic agents and contributes to resistance. What evidence is there that inhibitors of NF-κB might promote apoptosis in cancer cells and can NF-κB inhibitors be used to overcome resistance to chemotherapeutic agents?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A scheme of the nuclear factor-κB pathway activated by anticancer drugs.
Figure 2: Nuclear factor-κB inhibition and apoptosis.
Figure 3: Constitutive activation of nuclear factor-κB in cancer cells.

Similar content being viewed by others

References

  1. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004). An useful summary of the NF-κB pathways in the immune response.

    CAS  PubMed  Google Scholar 

  2. Jobin, C. & Sartor, R. B. The IκB/NF-κB system: a key determinant of mucosa inflammation and protection. Am. J. Physiol. Cell Physiol. 278, C451–C562 (2000).

    CAS  PubMed  Google Scholar 

  3. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    CAS  PubMed  Google Scholar 

  4. Hayden, M, S. & Ghosh, S. Signaling to NF-κB. Gene. Dev. 18, 2195–2224 (2004).

    CAS  PubMed  Google Scholar 

  5. Brummelkamp, T. R., Nijman, S. M. B., Dirac, A. M. G. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    CAS  Google Scholar 

  6. Garkavtsev, I. et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogensis. Nature 428, 328–332 (2004).

    CAS  PubMed  Google Scholar 

  7. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004). Presents evidence that the survival of hepatocytes and their progression to malignancy are regulated by NF-κB.

    CAS  PubMed  Google Scholar 

  8. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  9. Bottero, V. et al. Activation of nuclear factor-κB through the IKK complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res. 61, 7785–7791 (2001).

    CAS  PubMed  Google Scholar 

  10. Bourgarel-Rey, V. et al. Opposite effects of antimicrotubule agents on c-myc oncogene expression depending on the cell lines used. Eur. J. Cancer 36, 1043–1049 (2000).

    CAS  PubMed  Google Scholar 

  11. Ji, L., Arcinas, M. & Boxer, L. M. NF-κB sites function as positive regulators of expression of the translocated c-myc allele in Burkitt's lymphoma. Mol. Cell. Biol. 14, 7967–7974 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bourgarel-Rey, V. et al. Involvement of nuclear factor κB in c-myc induction by tubulin polymerization inhibitors. Mol. Pharmacol. 59, 1165–1170 (2001).

    CAS  PubMed  Google Scholar 

  13. Ozes, O. N. et al. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85 (1999).

    CAS  PubMed  Google Scholar 

  14. Tergaonkar, V., Pando, M., Vafa, O., Wahl, G., & Verma, I. p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493–503 (2002).

    CAS  PubMed  Google Scholar 

  15. Patel, N. M. et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-κB is enhanced by IκBα super-repressor and parthenoide. Oncogene 19, 4159–4169 (2000).

    CAS  PubMed  Google Scholar 

  16. Arlt, A. et al. Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 20, 859–868 (2001).

    CAS  PubMed  Google Scholar 

  17. Mabuchi, S. et al. Inhibition of NFκB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J. Biol. Chem. 279, 23477–23485 (2004).

    CAS  PubMed  Google Scholar 

  18. Kikuchi, E. et al. Suppression of hormone-refractory prostate cancer by a novel nuclear factor κB inhibitor in nude mice. Cancer Res. 63, 107–110 (2003).

    CAS  PubMed  Google Scholar 

  19. Arlt, A. et al. Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22, 3243–3251 (2003).

    CAS  PubMed  Google Scholar 

  20. Wang, W., Cassidy, J. O'Brien, V., Ryan, K. M. & Collie-Duguid, E. Mechanistic and predictive profiling of 5-fluorouracil resistance in human cancer cells. Cancer Res. 64, 8167–8176 (2004).

    CAS  PubMed  Google Scholar 

  21. Rayet, B. & Gelinas, C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18, 6938–6947 (1999).

    CAS  Google Scholar 

  22. Webster, G. & Perkins, N. Transcriptional cross-talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tergaonkar, V., Pando, M., Vafa, O., Wahl, G. & Verma, I. p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493–503 (2002).

    CAS  PubMed  Google Scholar 

  24. Karin, M., Cao, Y., Greten, F. & Li, Z. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    CAS  Google Scholar 

  25. Deveraux, Q., Reed, J. IAP family proteins-suppressors of apoptosis. Gene. Dev. 13, 239–252 (1999).

    CAS  PubMed  Google Scholar 

  26. Cheng, Q., Lee, H., Li, Y., Parks, T. & Cheng, G. Upregulation of Bcl-xl and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-κB inhibition. Oncogene 19, 4936–4940 (2000).

    CAS  PubMed  Google Scholar 

  27. Cusack, J. C., Liu, R., & Baldwin, A. S. Inducible chemoresistance to 7-ethyl-10-(4-(1-piperidino)-1-piperidino)-carbonyloxycamptothecin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-κB activation. Cancer Res. 60, 2323–2330 (2000).

    CAS  PubMed  Google Scholar 

  28. Donnellan, R. & Chetty, R. Cyclin D1 and human neoplasia. Mol. Pathol. 51, 1–7 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Izzo, J. G. et. al. Dysregulated cyclin D1 expression early in head and neck tumorigenesis: in vivo evidence for an association with subsequent gene amplification. Oncogene 17, 2313–2322 (1998).

    CAS  PubMed  Google Scholar 

  30. Takeshita, H. et al. Matrixmetallopoteinase 9 expression is induced by Epstein-Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J. Viol. 73, 5548–5555 (1999).

    CAS  Google Scholar 

  31. Rangaswami, H. Bulbule, A. & Kundu, G. C. Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IκBα kinase-dependent nuclear factor κB-mediated promatrix metalloproteinases-9 activation. J. Biol. Chem. 279, 38921–38935 (2004).

    CAS  PubMed  Google Scholar 

  32. Keely, P., Westwick, J., Whitehead, I., Der, C. & Parise, L. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390, 632–636 (1997).

    CAS  PubMed  Google Scholar 

  33. Huang, S., DeGuzman, A., Bucana, C. & Fidler, I. NF-κB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin. Cancer Res. 6, 2573–2581 (2000).

    CAS  PubMed  Google Scholar 

  34. Bentires-Alj, M. et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 22, 90–97 (2000).

    Google Scholar 

  35. Wang, C. Y., Cusack, J. C., Liu, R. & Baldwin, A. S. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NFκB. Nature Med. 5, 412–417 (1999).

    PubMed  Google Scholar 

  36. Guo, J., Verma, U. N. Gaynor, R. B., Frenkel, E. P. & Becerra, C. R. Enhanced chemosensitivity to irinotecan by RNA interference mediated downregulation of the NF-κB p65 subunit. Clin. Cancer Res. 10, 3333–3341 (2004).

    CAS  PubMed  Google Scholar 

  37. Cusack, J. C. et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res. 61, 3535–3540 (2001). Shows that the proteasome inhibitor PS-341 (bortezomib) leads to the augmentation of chemosensitivity to irinotecan in vivo colon cancer xenografts mouse model.

    CAS  PubMed  Google Scholar 

  38. Shah, S. A. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem. 82, 110–122 (2001).

    CAS  PubMed  Google Scholar 

  39. Bold, R. J., Virudachalam, S. & McConkey, D. J. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J. Surg. Res. 100, 11–17 (2001).

    CAS  PubMed  Google Scholar 

  40. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann. Rev. Immunol. 18, 621–663 (2000).

    CAS  Google Scholar 

  41. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  42. Zheng, B. et al. Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of Inhibitor of nuclear factor-κB mutations or activation of the CD30, CD40, and RANK receptors. Clin. Cancer Res. 10, 3207–3215 (2004).

    CAS  PubMed  Google Scholar 

  43. Adams, J. The proteasome: a suitable antineoplastic target? Nature Rev. Cancer 4, 349–360 (2004).

    CAS  Google Scholar 

  44. Hideshima, T. et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16639–16647 (2002).

    CAS  PubMed  Google Scholar 

  45. Orlowski, R. Z. et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. 20, 4420–4427 (2002).

    CAS  PubMed  Google Scholar 

  46. Richardson, P. G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).

    CAS  PubMed  Google Scholar 

  47. Denlinger, C. E., Keller, M. D., Mayo, M. W., Broad, R. M. & Jones, D. R. Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 127, 1078–1086 (2004).

    CAS  PubMed  Google Scholar 

  48. Denlinger, C. E., Rundall, B. K., Keller, M. D. & Jones, D. R. Proteasome inhibition sensitises non-small cell lung cancer to gemcitabine-induced apoptosis. Ann. Thorac. Surg. 78, 1207–1214 (2004).

    PubMed  Google Scholar 

  49. Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA 99, 16220–16225 (2002).

    CAS  PubMed  Google Scholar 

  50. Lin, Z. P. et al. Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-κB activation in drug resistance. Cancer Res. 58, 3059–3065 (1998).

    CAS  PubMed  Google Scholar 

  51. Pierce, J. W. et al. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997).

    CAS  PubMed  Google Scholar 

  52. Scaife, C. L. et al. Nuclear factor κB inhibitors induce adhesion-dependent colon cancer apoptosis: implications for metastasis. Cancer Res. 62, 6870–6878 (2002).

    CAS  PubMed  Google Scholar 

  53. Lowe, S. W., Cepero, E & Evan G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    CAS  PubMed  Google Scholar 

  54. Mori, N. et al. Constitutive activation of NF-κB in primary adult T-cell leukaemia cells. Blood 93, 2360–2368 (1999).

    CAS  PubMed  Google Scholar 

  55. Mori, N. et al. Bay 11-7082 inhibits transcription factor NF-κB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100, 1828–1834 (2002).

    CAS  PubMed  Google Scholar 

  56. Rundall, B. K., Denlinger, C. E. & Jones, D. R. Combined histone deacetylase and NF-κB inhibition sensitizes non-small cell lung cancer to cell death. Surgery 136, 416–425 (2004).

    PubMed  Google Scholar 

  57. Pierce, J. W. et al. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997).

    CAS  PubMed  Google Scholar 

  58. Dai, Y. et al. Interruption of the NF-κB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 103, 2761–2770 (2004).

    CAS  PubMed  Google Scholar 

  59. Nguyen, D. M. et al. Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J. Thorac. Cardiovasc. Surg. 127, 365–375 (2004).

    CAS  PubMed  Google Scholar 

  60. Scott, K. A. et al. An anti-tumor necrosis factor-α antibody inhibits the development of experimental skin tumors. Mol. Cancer Ther. 2, 445–451 (2003).

    CAS  PubMed  Google Scholar 

  61. Szlosarek, P. & Balkwill, F. Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol. 4, 565–573 (2003).

    CAS  PubMed  Google Scholar 

  62. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of IκB-1α proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488 (1995).

    CAS  PubMed  Google Scholar 

  63. Oya, M. et al. Constitutive activation of nuclear factor-κB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 20, 3888–3896 (2001).

    CAS  PubMed  Google Scholar 

  64. Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A. & Karin, M. Immunosuppression by glucocorticoids: inhibition of NFκB activity through inhibition of IκB synthesis. Science 270, 286–290 (1995).

    CAS  PubMed  Google Scholar 

  65. Gasparini, G., Longo, R., Sarmiento, R. & Morabito, A. Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol. 4, 605–615 (2003).

    CAS  PubMed  Google Scholar 

  66. Yin, M. J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396, 77–80 (1998).

    CAS  PubMed  Google Scholar 

  67. Mitchell, J. A., Akarasereenont, P., Thiermermann, C., Flower, R. J. & Vane, J. R. Selectivity of nonsteroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl Acad. Sci. USA 90, 11693–11697 (1994).

    Google Scholar 

  68. Kalgutkar, A. S. et al. Aspirin-like molecule that covalently inactivates cyclooxygenase-2. Science 280, 1268–1270 (1998).

    CAS  PubMed  Google Scholar 

  69. Yamamoto, Y., Yin, M. -J., Lin, K. M. & Gaynor, R. B. Sulindac inhibits activation of the NF-κB pathway. J. Biol. Chem. 274, 27307–27314 (1999).

    CAS  PubMed  Google Scholar 

  70. Shishodia, S., Koul, D. & Aggarwal, B. B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-κB activation through inhibition of activation of IκBα kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J. Immunol. 173, 2011–2022 (2004). Shows that the COX2 inhibitor celecoxib suppresses NF-κB activation induced by a wide range of agents in various cell types, leading to downregulation in the synthesis of COX2.

    CAS  PubMed  Google Scholar 

  71. Wahl, C., Liptay, S., Adler, G. & Schmid, R. M. Sulufasalazine: a potent and specific inhibitor of nuclear factor κB. J. Clin. Invest. 101, 1163–1174 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber, C. K., Liptay, S., Wirth, T., Adler, G. & Schmid, R. M. Suppression of NF-κB activity by sulfasalazine is mediated by direct inhibition of IκB kinases α and β. Gastroenterology 119, 1209–1218 (2000).

    CAS  PubMed  Google Scholar 

  73. Hovstadius, P. et al. A phase I study of CHS 828 in patients with solid tumor malignancy. Clin. Cancer Res. 8, 2843–2850 (2002).

    CAS  PubMed  Google Scholar 

  74. Olsen, L. S. et al. Anticancer agent CHS 828 suppresses nuclear factor-κB activity in cancer cells through downregulation of IKK activity. Int. J. Cancer 111, 198–205 (2004).

    CAS  PubMed  Google Scholar 

  75. Mrtinsson, P., Ekelund, S., Nygren, P. & Larsson, R. The combination of the antitumoural pyridyl cyanoguanidine CHS828 and etoposide in vitro-from cytotoxic synergy to complete inhibition of apoptosis. Br. J. Pharmacol. 137, 568–573 (2002).

    Google Scholar 

  76. Decker, R. H., Dai, Y. & Grant, S. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in human leukemia cells (U937) through the mitochondrial rather than the receptor-mediated pathway. Cell Death Differ. 8, 715–724 (2001).

    CAS  PubMed  Google Scholar 

  77. Thomas, J. P. et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother. Pharmacol. 50, 465–472 (2002).

    CAS  PubMed  Google Scholar 

  78. Karp, J. E. et al. Timed sequential therapy of acute leukemia with flavopiridol: in vitro model for a phase I clinical trial. Clin. Cancer Res. 9, 307–315 (2003).

    CAS  PubMed  Google Scholar 

  79. Takada, Y. & Aggarwal, B. B. Flavopiridol inhibitis NF-κB activation induced by various carcinogens and inflammatory agents through inhibition of IκBα kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9. J. Biol. Chem. 279, 4750–4759 (2004).

    CAS  PubMed  Google Scholar 

  80. Gao, N., Dai, Y., Rahmani, M., Dent, P. & Grant S. Contribution of disruption of the nuclear factor-κB pathway to induction of apoptosis in human leukemia cells by histone deacetylase inhibitors and flavopiridol. Mol. Pharmacol. 66, 956–963 (2004).

    CAS  PubMed  Google Scholar 

  81. Motwani, M., Delohery, T. M. & Schwartz, G. K. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin. Cancer Res. 5, 1876–1883 (1999).

    CAS  PubMed  Google Scholar 

  82. Rosato, R. R. et al. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol. Cancer Ther. 1, 253–266 (2002).

    CAS  PubMed  Google Scholar 

  83. Erkel, G., Anke, T. & Sterner, O. Inhibition of NFκB activation by panepoxydone. Biochem. Biophys. Res. Comm. 226, 214–221 (1996).

    CAS  PubMed  Google Scholar 

  84. Matsumoto, N. et al. Synthesis of NFκB activation inhibitors derived from epoxyquinomicin C. Bioog. Med. Chem. Lett. 10, 865–869 (2000).

    CAS  Google Scholar 

  85. Ariga, A., Namekawa, J., Matsumoto, N., Inoue, J. & Umezawa, K. Inhibition of tumor necrosis factor-α-induced nuclear translocation and activation of NFκB by dehydroxymethylepoxyquinomicin. J. Biol. Chem. 277, 24625–24630 (2002).

    CAS  PubMed  Google Scholar 

  86. Pati, S. et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99, 3771–3779 (2002).

    CAS  PubMed  Google Scholar 

  87. Sgadari, C. et al. HIV protease inhibitors are potent antiangiogenic molecules and promote regression of Kaposi sarcoma. Nature Med. 8, 225–232 (2002).

    CAS  PubMed  Google Scholar 

  88. Pajonk, F., Himmelsbach, J., Riess, K., Sommer, A. & McBride W. H. the human immunodeficiendy virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and cause apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 62, 5230–5235 (2002).

    CAS  PubMed  Google Scholar 

  89. Ikezoe, T. et al. HIV-1protease inhibitor, ritonavir: a potent inhibitor of CYP3A4, enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo. Cancer Res. 64, 7426–7431 (2004).

    CAS  PubMed  Google Scholar 

  90. Kumar, G. N., Rodrigues, A. D., Buko, A. M. & Denissen, J. F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsome. J. Pharmaco. Exp. Ther 277, 423–431 (1996).

    CAS  Google Scholar 

  91. Li, Y. et al. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-κB in BxPC-3 pancreatic cancer cell line. Pancreas 28, e90–95 (2004).

    PubMed  Google Scholar 

  92. Sigala, J. L. D. et al. Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 304, 1963–1967 (2004).

    Google Scholar 

  93. Romano, M. F. et al. Rapamycin inhibits doxorubicin-induced NF-κB-Rel nuclear activity and enhances the apoptosis of melanoma cells. Eur. J. Cancer 40, 2829–2836 (2004).

    CAS  PubMed  Google Scholar 

  94. Barlogie, B. et al. Treatment of multiple myeloma. Blood 103, 20–32 (2004).

    CAS  PubMed  Google Scholar 

  95. Palanki, M. S. et al. structure-activity relationship studies of ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl)pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression. Bioorg. Med. Chem. Lett. 12, 2573–2577 (2002).

    CAS  PubMed  Google Scholar 

  96. Castro, A. C. et al. Novel IKK inhibitors: β-carbolines. Boorg. Med. Chem. Lett. 13, 2491–2422 (2003).

    Google Scholar 

  97. Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

    CAS  PubMed  Google Scholar 

  98. Kishore, N. et al. A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in interleukin-1β-stimulated synovial fibroblasts. J. Biol. Chem. 278, 32861–32871 (2003).

    CAS  PubMed  Google Scholar 

  99. Shigeno, M. et al. Interferon-α sensitises human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-κB inactivation. Oncogene 22, 1653–1662 (2003).

    CAS  PubMed  Google Scholar 

  100. Lentsch, A. B., Shanley, T. P., Sarma, V. & Ward, P. A. In vivo suppression of NF-κB and presentation of I-κBα by interleukin-10 and interleukin-13. J. Clin. Invest. 100, 2443–2448 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Manna, S. K & Aggarwal, B. B. IL-13 suppresses TNF-induced activation of nuclear factor-κB, activation protein-1, and apoptosis. J. Immunol. 161, 2863–2872 (1998).

    CAS  PubMed  Google Scholar 

  102. Molina-Holgado, E. et al. Interleukin-4 and interleukin-10 modulate nuclear factor κB activity and nitric oxide synthase-2 expression in Theiler's virus-infected brain astrocytes. J. Neurochem. 81, 1242–1252 (2002).

    CAS  PubMed  Google Scholar 

  103. Teare, K. A., Pearson, R. G., Shakesheff, K. M. & Haycock, J. W. α-MSH inhibits inflammatory signalling in schwann cells. Neuroreport. 15, 493–498 (2004).

    CAS  PubMed  Google Scholar 

  104. Rao, Ch. V., Li, X. Manna, S. K., Lei, Z. M. & Aggarwal, B. B. Human chorionic gonadotropin decreases proliferation and invasion of breast cancer MCF-7 cells by inhibiting NF-κB and AP-1 activation. J. Biol. Chem. 279, 25503–25510 (2004).

    CAS  PubMed  Google Scholar 

  105. Haeffner, A. et al. Inhibitory effect of growth hormone on TNF-α secretion and nuclear factor-κB transcription in lipopolysaccharide-stimulated human monocytes. J. Immunol. 158, 1310–1314 (1997).

    CAS  PubMed  Google Scholar 

  106. Cherbonier, C. et al. Potentiation of tumour apoptosis by human growth hormone via glutathione production and decreased NF-κB activity. Br. J. Cancer 89, 1108–1115 (2003).

    Google Scholar 

  107. Li, W. G. et al. Ghrelin inhibits Proinflammatory responses and nuclear factor-κB activation in human endothelial cells. Circulation 109, 2221–2226 (2004).

    CAS  PubMed  Google Scholar 

  108. De Smaele, E. et al. Induction of gadd 45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).

    CAS  PubMed  Google Scholar 

  109. Tang, G. et al. Inhibition of JNK activation through NFκB target genes. Nature 414, 313–317 (2001).

    CAS  PubMed  Google Scholar 

  110. Sanchez-Perez, I., Benitah, S. A., Martinez-Gomariz, M., Lacal, J. C. & Perona, R. Cell stress and MEKK1-mediated c-Jun activation modulate NFκB activity and cell viability. Mol. Biol. Cell. 13, 2933–2945 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tergaonkar, V., Bottero, V., Ikawa, M., Li, Q. & Verma, I. M. IκB kinase-independent IκBα degradation pathway: functional NF-κB activity and implications for cancer therapy. Mol. Cell. Biol. 23, 8070–8083 (2003). Indicates that NF-κB activation by chemotherapeutic agents is mediated by IKK-dependent and -independent pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Brach, M. A. et al. Ionizing radiation induces expression and binding activity of the nuclear factor κB. J. Clin. Invest. 88, 691–695 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nature Rev. Cancer 4, 423–436 (2004).

    CAS  Google Scholar 

  114. Campbell, K. J., Rocha, S. & Perkins, N. D. Active repression of antiapoptotic gene expression by RelAp65 NFR-κB. Mol. Cell 13, 853–865 (2004).

    CAS  PubMed  Google Scholar 

  115. Turco, M. C. et al. NF-κB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18, 11–17 (2004).

    CAS  PubMed  Google Scholar 

  116. Das, K. C. & White, C. W. Activation of NF-κB by antineoplastic agents. J. Biol. Chem. 272, 14914–14920 (1997).

    CAS  PubMed  Google Scholar 

  117. Piret, B. & Piette, J. Topoisomerase poisons activate the transcription factor NF-κB in ACH-2 and CEM cells. Nucleic Acids Res. 24, 4242–4248 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr. TNF-α and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    CAS  PubMed  Google Scholar 

  119. Rosette, C. & Karin, M. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-κB. J. Cell Biol. 128, 1111–1119 (1995).

    CAS  PubMed  Google Scholar 

  120. Fahy, B. N., Schkieman, M. G., Virudachalam, S. & Bold, R. J. Inhibition of Akt abrogates chemotherapy-induced NF-κB survival mechanism: implications for therapy in pancreatic cancer. J. Am. Coll. Surg. 198, 591–599 (2004).

    PubMed  Google Scholar 

  121. Mayo, M. W. et al. Ineffectiveness of hitsone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-κB through the Akt pathway. J. Biol. Chem. 278, 18980–18989 (2003).

    CAS  PubMed  Google Scholar 

  122. Adam, E. et al. Potentiation of tumor necrosis factor-induced NF-κB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IκBα. Mol. Cell. Biol. 23, 6200–6209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gong, L., Li, Y., Kurepa, A. N. & Sarkar, F. H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 22, 4702–4709 (2003).

    CAS  PubMed  Google Scholar 

  124. Watabe, M., Hishikawa, K., Takayanagi, A., Shimizu, N. & Nakaki, T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFκB and activation of Fas in human breast cancer MCF-7 cells. J. Biol. Chem. 279, 6017–6026 (2004).

    CAS  PubMed  Google Scholar 

  125. Natarajan, K., Singh, S., Burke, T. R. Jr., Grunberger, D. & Aggarwal, B. B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-κB. Proc. Natl Acad. Sci. USA 93, 9090–9095 (1996).

    CAS  PubMed  Google Scholar 

  126. Srivastava, S. K. & Singh, S. V. Cell cycle arrest, apoptosis induction and inhibition of nuclear factor κB activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25, 1701–1709 (2004).

    CAS  PubMed  Google Scholar 

  127. Holmes-McNary, M. & Baldwin, A. S. Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IκB kinase. Cancer Res. 60, 3477–3483 (2000).

    CAS  PubMed  Google Scholar 

  128. Estrov, Z. et al. Resveratrol blocks interleukin-1α-induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, cause S-phase arrest, and induces apoptosis of acute myeloid leukaemia cells. Blood 102, 987–995 (2003).

    CAS  PubMed  Google Scholar 

  129. Li, L., Aggarwal, B. B., Shishodia, S, Abbruzzese, J. & Kurzrock, R. Nuclear factor-κB and IκB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101, 2351–2362 (2004).

    CAS  PubMed  Google Scholar 

  130. Aggarwal, S., Takada, Y., Singh, S., Myers, J. N. and Aggarwal, B. B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-κB signalling. Int. J. Cancer 111, 679–692 (2004).

    CAS  PubMed  Google Scholar 

  131. Saleem, M., Afaq, F., Adhami, V. M. & Mukhtar, H. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23, 5203–5214 (2004).

    CAS  PubMed  Google Scholar 

  132. Aktas, O. et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 173, 5794–5800 (2004).

    CAS  PubMed  Google Scholar 

  133. Kim, G. Y. et al. Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-κB. Immunology 113, 203–211 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Minekawa, R. et al. Human breast milk suppresses the transcriptional regulation of IL-1β-induced NF-κB signalling in human intestinal cell. Am. J. Physiol. Cell Physiol. 287, C1404–C1411 (2004).

    CAS  PubMed  Google Scholar 

  135. Xia, Y. F. et al. Andrographolide attenuates inflammation by inhibition of NF-κB activation through covalent modification of reduced cystein 62 of p50. J. Immunol. 173, 4207–4217 (2004).

    CAS  PubMed  Google Scholar 

  136. Shishodia, S. & Aggarwal, B. B. Guggulsterone inhibits NF-κB and IκB kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem. 279, 47148–47158 (2004).

    CAS  PubMed  Google Scholar 

  137. Siedle, B. et al. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the nuclear factor NF-κB. J. Med. Chem. 47, 6042–6054 (2004).

    CAS  PubMed  Google Scholar 

  138. Gehrt, A., Erkel, G., Anke, T. & Sterner, O. Cycloepoxydon, 1-hydroxy-2-hydroxymethyl-3-pent-1-enylbenzene and 1-hydroxy-2-hydroxymethyl-3-pent-1,3-dienylbenzene, new inhibitors of eukaryotic signal transduction. J. Antibiot. (Tokyo) 51, 455–463 (1998).

    CAS  Google Scholar 

  139. Pahl, H. L. et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor Nk-κB. J. Exp. Med. 183, 1829–1840 (1996).

    CAS  PubMed  Google Scholar 

  140. Cheng, A. L. et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 21, 2895–2900 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Aoki and N. Kanamoto for kind help. This work was supported by a grant for optimization of new anticancer drugs from the Health and Labour Sciences Research Grants of Third Term Comprehensive Control Research for Cancer from the Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AKT

BCL-XL

BFL1

CD44

CDC25A

CDC25C

COX2

CYLD

ELKS

FKBP51

IκBα

IKKα

IKKβ

IKKγ

IL-1

ING4

JUN

MDM2

MDR1

MEKK1

MMP2

MMP9

MYC

NF-κB1

NF-κB2

p21

p27

p53

REL

RELA

RELB

TNFα

OMIM

familial cylindromatosis

Glossary

ANKYRIN REPEAT

A repeating sequence of 30–33 amino acids that is found in the ankyrin protein. The ankyrin repeat of IκB proteins is required for association with the nuclear localization signal of NF-κB proteins.

PROTEASOME

A 26S multiprotein complex that catalyses the breakdown of polyubiquitylated proteins.

COLITIS-ASSOCIATED CANCER

Colitis-associated cancer arises in patients with inflammatory bowel disease, particularly ulcerative colitis. The risk of colorectal cancer in patients with ulcerative colitis 20 years after the initial diagnosis is estimated to be between 5% and 10%.

CYCLOOXYGENASE-2

Cyclooxygenase-2 (COX2) is the enzyme that normally synthesizes prostaglandins during an inflammatory response. Proinflammatory and mitogenic stimuli, such as growth factors and cytokines, induce COX2 and many tumours express COX2.

UBIQUITIN

A 76-amino-acid polypeptide that is highly conserved in eukaryotic cells. The ubiquitin system is a conserved complex that marks old or defective proteins for cleavage.

OFF-TARGET EFFECT

This term is used to describe the effect of a drug on another protein, molecule or complex that is different from the protein that it is known to effect or originally designed to effect.

PYRIDYL CYANOGUANIDINE

Pyridyl cyanoguanidines are potassium-channel openers. Pinacidil (N-1,2,2-trimethylpropyl-N-cyano-N′-4-pyridylguanidine) is a structural prototype with potent antihypertensive activity. Replacement of the side chain of pinacidil by longer aryl-containing side chains give rise to compounds with increasing antitumour activity but without antihypertensive activity.

ELKS

ELKS is a 105-kDa IKK regulatory subunit protein. The name ELKS is derived from the relative abundance of its constitutive amino acids: glutamic acid (E), leucine (L), lysine (K) and serine (S). The function of ELKS is probably to recruit IκBα to the IKK complex.

MACROLIDES

A group of antibiotics produced by various strains of Streptomyces that have a complex macrocyclic structure. They inhibit protein synthesis by blocking the 50S ribosomal subunit and include erythromycin and carbomycin.

IMMUNOPHILINS

Receptors for immunosuppressive drugs such as cyclosporin A and rapamycin. Drug– immunophilin complexes suppress the immune response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, C., Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5, 297–309 (2005). https://doi.org/10.1038/nrc1588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing