Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics

Abstract

Accurate quantification of protein expression in biological systems is an increasingly important part of proteomics research. Incorporation of differential stable isotopes in samples for relative protein quantification has been widely used. Stable isotope incorporation at the peptide level using dimethyl labeling is a reliable, cost-effective and undemanding procedure that can be easily automated and applied in high-throughput proteomics experiments. Although alternative multiplex quantitative proteomics approaches introduce isotope labels at the organism level ('stable isotope labeling by amino acids in cell culture' (SILAC)) or enable the simultaneous analysis of eight samples (isobaric tagging for relative and absolute quantification (iTRAQ)), stable isotope dimethyl labeling is advantageous in that it uses inexpensive reagents and is applicable to virtually any sample. We describe in-solution, online and on-column protocols for stable isotope dimethyl labeling of sample amounts ranging from sub-micrograms to milligrams. The labeling steps take approximately 60–90 min, whereas the full protocol including digestion and (two-dimensional) liquid chromatography-mass spectrometry takes approximately 1.5–3 days to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Labeling schemes of triplex stable isotope dimethyl labeling.
Figure 2: Pictures of various experimental set-ups for stable isotope dimethyl labeling.
Figure 3: Extracted ion chromatograms and mass spectra of the BSA peptide YICDNQDTISSK.
Figure 4: MS triplets of doubly and triply charged triplex stable isotope dimethyl-labeled BSA peptides LGEYGFQNALIVR and TCVADESHAGCEK.
Figure 5: Differential protein expression and phosphorylation after morpholino-mediated Fyn/Yes knockdown in zebrafish embryos.

Similar content being viewed by others

References

  1. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    Article  CAS  Google Scholar 

  2. Ong, S.E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    Article  CAS  Google Scholar 

  3. Heck, A.J.R. & Krijgsveld, J. Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics 1, 317–326 (2004).

    Article  CAS  Google Scholar 

  4. Ong, S.E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).

    Article  CAS  Google Scholar 

  5. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

  6. Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat. Protoc. 1, 139–145 (2006).

    Article  CAS  Google Scholar 

  7. Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).

    Article  CAS  Google Scholar 

  8. Staes, A. et al. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 1362–1370 (2008).

    Article  CAS  Google Scholar 

  9. Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotech. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  10. Harsha, H.C., Molina, H. & Pandey, A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat. Protoc. 3, 505–516 (2008).

    Article  CAS  Google Scholar 

  11. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).

    Article  CAS  Google Scholar 

  12. Pierce, A. et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol. Cell Proteomics 7, 853–863 (2008).

    Article  CAS  Google Scholar 

  13. Hsu, J.L., Huang, S.Y., Chow, N.H. & Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

    Article  CAS  Google Scholar 

  14. Boersema, P.J., Aye, T.T., Van Veen, T.A.B., Heck, A.J.R. & Mohammed, S. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8, 4624–4632 (2008).

    Article  CAS  Google Scholar 

  15. Raijmakers, R. et al. Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Mol. Cell Proteomics 7, 1755–1762 (2008).

    Article  CAS  Google Scholar 

  16. Hsu, J.L., Huang, S.Y., Shiea, J.T., Huang, W.Y. & Chen, S.H. Beyond quantitative proteomics: signal enhancement of the a(1) ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 4, 101–108 (2005).

    Article  CAS  Google Scholar 

  17. Hsu, J.L., Huang, S.Y. & Chen, S.H. Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 27, 3652–3660 (2006).

    Article  CAS  Google Scholar 

  18. Hsu, J.L., Chen, S.H., Li, D.T. & Shi, F.K. Enhanced a(1) fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J. Proteome Res. 6, 2376–2383 (2007).

    Article  CAS  Google Scholar 

  19. Shen, P.T., Hsu, J.L. & Chen, S.H. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Anal. Chem. 79, 9520–9530 (2007).

    Article  CAS  Google Scholar 

  20. Lemeer, S. et al. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol. Cell Proteomics 7, 2176–2187 (2008).

    Article  CAS  Google Scholar 

  21. Kwok, M.C.M., Holopainen, J.M., Molday, L.L., Foster, L.J. & Molday, R.S. Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol. Cell Proteomics 7, 1053–1066 (2008).

    Article  CAS  Google Scholar 

  22. Ji, C., Li, L., Gebre, M., Pasdar, M. & Li, L. Identification and quantification of differentially expressed proteins in E-Cadherin deficient SCC9 cells and SCC9 transfectants expressing E-Cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. J. Proteome Res. 4, 1419–1426 (2005).

    Article  CAS  Google Scholar 

  23. Synowsky, S.A., van Wijk, M., Raijmakers, R. & Heck, A.J.R. Comparative multiplexed mass spectrometric analyses of the endogenously expressed yeast nuclear and cytoplasmic exosome. J. Mol. Biol. 385, 1300–1313 (2009).

    Article  CAS  Google Scholar 

  24. Van Hoof, D. et al. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat. Methods 4, 677–678 (2007).

    Article  CAS  Google Scholar 

  25. Klammer, A.A. & MacCoss, M.J. Effects of modified digestion schemes on the identification of proteins from complex mixtures. J. Proteome Res. 5, 695–700 (2006).

    Article  CAS  Google Scholar 

  26. Pinkse, M.W.H., Uitto, P.M., Hilhorst, M.J., Ooms, B. & Heck, A.J.R. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935–3943 (2004).

    Article  CAS  Google Scholar 

  27. Huang, S.Y. et al. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 6, 1722–1734 (2006).

    Article  CAS  Google Scholar 

  28. Perkins, D.N., Pappin, D.J.C., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  29. Eng, J.K., McCormack, A.L. & Yates, J.R. An approach to correlate tandem mass-spectral data of peptide with amino-acid-sequence in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  30. Colinge, J., Masselot, A., Giron, M., Dessingy, T. & Magnin, J. OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463 (2003).

    Article  CAS  Google Scholar 

  31. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  32. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  33. Nagele, E., Vollmer, M., Horth, P. & Vad, C. 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Rev. Proteomics 1, 37–46 (2004).

    Article  Google Scholar 

  34. Pinkse, M.W.H. et al. Highly robust, automated, and sensitive on line TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster . J. Proteome Res. 7, 687–697 (2008).

    Article  CAS  Google Scholar 

  35. Ji, C. & Li, L. Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS. J. Proteome Res. 4, 734–742 (2005).

    Article  CAS  Google Scholar 

  36. Ji, C., Lo, A., Marcus, S. & Li, L. Effect of 2MEGA labeling on membrane proteome analysis using LC-ESI QTOF MS. J. Proteome Res. 5, 2567–2576 (2006).

    Article  CAS  Google Scholar 

  37. Ji, C., Guo, N. & Li, L. Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J. Proteome Res. 4, 2099–2108 (2005).

    Article  CAS  Google Scholar 

  38. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).

    Article  CAS  Google Scholar 

  39. Guo, K., Ji, C. & Li, L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal. Chem. 79, 8631–8638 (2007).

    Article  CAS  Google Scholar 

  40. Rogers, L.D. & Foster, L.J. The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 104, 18520–18525 (2007).

    Article  CAS  Google Scholar 

  41. Aye, T.T. et al. Selectivity in enrichment of PKA RI and RII isoforms and their interactors using modified cAMP affinity resins. Mol. Cell. Proteomics (in press).

  42. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Sharon Gauci for critically reviewing this paper. This study was supported by The Netherlands Proteomics Centre (http://www.netherlandsproteomicscentre.nl/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shabaz Mohammed or Albert J R Heck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boersema, P., Raijmakers, R., Lemeer, S. et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484–494 (2009). https://doi.org/10.1038/nprot.2009.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.21

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing