Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons

Abstract

Despite the crucial role that prostaglandins (PGs) have in the sensitization of the central nervous system to pain, their cellular and molecular targets leading to increased pain perception have remained elusive. Here we investigated the effects of PGE2 on fast synaptic transmission onto neurons in the rat spinal cord dorsal horn, the first site of synaptic integration in the pain pathway. We identified the inhibitory (strychnine-sensitive) glycine receptor as a specific target of PGE2. PGE2, but not PGF, PGD2 or PGI2, reduced inhibitory glycinergic synaptic transmission in low nanomolar concentrations, whereas GABAA, AMPA and NMDA receptor-mediated transmission remained unaffected. Inhibition of glycine receptors occurred via a postsynaptic mechanism involving the activation of EP2 receptors, cholera-toxin-sensitive G-proteins and cAMP-dependent protein kinase. Via this mechanism, PGE2 may facilitate the transmission of nociceptive input through the spinal cord dorsal horn to higher brain areas where pain becomes conscious.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of PGE2 on PSCs mediated by glycine, GABAA, AMPA and NMDA receptors.
Figure 2: Localization of prostaglandin (PG)-sensitive and -insensitive neurons in the rat spinal cord dorsal horn.
Figure 3: Effects of different PGs on glycinergic neurotransmission.
Figure 4: Effects of several synthetic EP receptor agonists with preferential activity at EP1–4 receptor subtypes on glycinergic neurotransmission.
Figure 5: PGE2 reduced glycinergic mIPSCs in amplitude, but not in frequency.
Figure 6: Inhibition by PGE2 of whole-cell currents evoked by exogenous application of glycine and GABA.
Figure 7: Inhibition of glycinergic IPSCs by PGE2 required the activation of a ChTX-sensitive G-protein.
Figure 8: Involvement of protein kinase A, but not of protein kinase C.

Similar content being viewed by others

References

  1. Doubell, T. P., Mannion, R. J. & Woolf, C. J. in Textbook of Pain (eds. Wall, P. D. & Melzack, R.) 165–181 (Churchill Livingstone, Edinburgh, Scotland, 1999).

    Google Scholar 

  2. Yaksh, T. L., Hua, X. Y., Kalcheva, I., Nozaki-Taguchi, N. & Marsala, M. The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc. Natl. Acad. Sci. USA 96, 7680–7686 (1999).

    Article  CAS  Google Scholar 

  3. O'Banion, M. K. Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit. Rev. Neurobiol. 13, 45–82 (1999).

    Article  CAS  Google Scholar 

  4. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    Article  CAS  Google Scholar 

  5. Kumazawa, T., Mizumura, K. & Koda, H. Involvement of EP3 subtype of prostaglandin E receptors in PGE2-induced enhancement of the bradykinin response of nociceptors. Brain Res. 632, 321–324 (1993).

    Article  CAS  Google Scholar 

  6. Vanegas, H. & Schaible, H. Prostaglandins and cyclooxygenases in the spinal cord. Prog. Neurobiol. 64, 327–363 (2001).

    Article  CAS  Google Scholar 

  7. Samad, T. A. et al. Interleukin-1 β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    Article  CAS  Google Scholar 

  8. Ichitani, Y., Shi, T., Haeggstrom, J. Z., Samuelsson, B. & Hokfelt, T. Increased levels of cyclooxygenase-2 mRNA in the rat spinal cord after peripheral inflammation: an in situ hybridization study. Neuroreport 8, 2949–2952 (1997).

    Article  CAS  Google Scholar 

  9. Beiche, F., Scheuerer, S., Brune, K., Geisslinger, G. & Goppelt-Struebe, M. Up-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Lett. 390, 165–169 (1996).

    Article  CAS  Google Scholar 

  10. Guhring, H. et al. Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J. Neurosci. 20, 6714–6720 (2000).

    Article  CAS  Google Scholar 

  11. Fuxe, K. & Agnati, L. F. Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission (Raven, New York, 1991).

    Google Scholar 

  12. Matsumura, K. et al. Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res. 581, 292–298 (1992).

    Article  CAS  Google Scholar 

  13. Kawamura, T. et al. Expression of prostaglandin EP2 receptor mRNA in the rat spinal cord. Life Sci. 61, 2111–2116 (1997).

    Article  CAS  Google Scholar 

  14. Beiche, F., Klein, T., Nusing, R., Neuhuber, W. & Goppelt-Struebe, M. Localization of cyclooxygenase-2 and prostaglandin E2 receptor EP3 in the rat lumbar spinal cord. J. Neuroimmunol. 89, 26–34 (1998).

    Article  CAS  Google Scholar 

  15. Nakamura, K. et al. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol. 421, 543–569 (2000).

    Article  CAS  Google Scholar 

  16. Donaldson, L. F., Humphrey, P. S., Oldfield, S., Giblett, S. & Grubb, B. D. Expression and regulation of prostaglandin E receptor subtype mRNAs in rat sensory ganglia and spinal cord in response to peripheral inflammation. Prostaglandins 63, 109–122 (2001).

    Article  CAS  Google Scholar 

  17. Baba, H., Kohno, T., Moore, K. A. & Woolf, C. J. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J. Neurosci. 21, 1750–1756 (2001).

    Article  CAS  Google Scholar 

  18. Yaksh, T. L. & Malmberg, A. B. in Textbook of Pain (eds. Wall, P. D. & Melzack, R.) 165–200 (Churchill Livingston, Edinburgh, Scotland, 1994).

    Google Scholar 

  19. Narumiya, S., Sugimoto, Y. & Ushikubi, F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 79, 1193–1226 (1999).

    Article  CAS  Google Scholar 

  20. Kiriyama, M. et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 122, 217–224 (1997).

    Article  CAS  Google Scholar 

  21. Boie, Y. et al. Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur. J. Pharmacol. 340, 227–241 (1997).

    Article  CAS  Google Scholar 

  22. Kaslow, H. R. & Burns, D. L. Pertussis toxin and target eukaryotic cells: binding, entry, and activation. FASEB J. 6, 2684–2690 (1992).

    Article  CAS  Google Scholar 

  23. Ribeiro-Neto, F. A. et al. ADP-ribosylation of membrane components by pertussis and cholera toxin. Methods Enzymol. 109, 566–572 (1985).

    Article  CAS  Google Scholar 

  24. Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358–367 (1997).

    Article  CAS  Google Scholar 

  25. Eguchi, N. et al. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc. Natl. Acad. Sci. USA 96, 726–730 (1999).

    Article  CAS  Google Scholar 

  26. Minami, T. et al. Allodynia evoked by intrathecal administration of prostaglandin F2 alpha to conscious mice. Pain 50, 223–229 (1992).

    Article  CAS  Google Scholar 

  27. Malmberg, A. B. & Yaksh, T. L. Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthetized rats. J. Neurosci. 15, 2768–2776 (1995).

    Article  CAS  Google Scholar 

  28. Yang, L. C., Marsala, M. & Yaksh, T. L. Characterization of time course of spinal amino acids, citrulline and PGE2 release after carrageenan/kaolin-induced knee joint inflammation: a chronic microdialysis study. Pain 67, 345–354 (1996).

    Article  CAS  Google Scholar 

  29. Vaello, M. L., Ruiz-Gomez, A., Lerma, J. & Mayor, F. Jr. Modulation of inhibitory glycine receptors by phosphorylation by protein kinase C and cAMP-dependent protein kinase. J. Biol. Chem. 269, 2002–2008 (1994).

    CAS  PubMed  Google Scholar 

  30. Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5, 318–323 (1995).

    Article  CAS  Google Scholar 

  31. Gosselin, R. E., Hodge, H. C., Smith, R. P. & Gleason, M. N. Clinical Toxicology of Commercial Products 4th edn. (Williams and Wilkins, Baltimore, 1976).

    Google Scholar 

  32. Beyer, C., Roberts, L. A. & Komisaruk, B. R. Hyperalgesia induced by altered glycinergic activity at the spinal cord. Life Sci. 37, 875–882 (1985).

    Article  CAS  Google Scholar 

  33. Yaksh, T. L. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 37, 111–123 (1989).

    Article  CAS  Google Scholar 

  34. Perper, J. A. Fatal strychnine poisoning—a case report and review of the literature. J. Forensic. Sci. 30, 1248–1255 (1985).

    Article  CAS  Google Scholar 

  35. Becker, C. M. Convulsants acting at the inhibitory glycine receptor. Handbook Exp. Pharmacol. 102, 539–575 (1992).

    CAS  Google Scholar 

  36. Arena, J. M. Poisoning: Toxicity, Symptoms, Treatments 4th edn. (C. C. Thomas, Springfield, Illinois, 1979).

    Google Scholar 

  37. Zieglgänsberger, W. & Herz, A. Changes of cutaneous receptive fields of spino-cervical-tract neurones and other dorsal horn neurones by microelectrophoretically administered amino acids. Exp. Brain Res. 13, 111–126 (1971).

    Article  Google Scholar 

  38. Okuda-Ashitaka, E. et al. Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 392, 286–289 (1998).

    Article  CAS  Google Scholar 

  39. Zeilhofer, H. U., Muth-Selbach, U., Guhring, H., Erb, K. & Ahmadi, S. Selective suppression of inhibitory synaptic transmission by nocistatin in the rat spinal cord dorsal horn. J. Neurosci. 20, 4922–4929 (2000).

    Article  CAS  Google Scholar 

  40. Minami, T., Okuda-Ashitaka, E., Nishizawa, M., Mori, H. & Ito, S. Inhibition of nociceptin-induced allodynia in conscious mice by prostaglandin D2 . Br. J. Pharmacol. 122, 605–610 (1997).

    Article  CAS  Google Scholar 

  41. Brandon, E. P. et al. Hippocampal long-term depression and depotentiation are defective in mice carrying a targeted disruption of the gene encoding the RI β subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 92, 8851–8855 (1995).

    Article  CAS  Google Scholar 

  42. Malmberg, A. B. et al. Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J. Neurosci. 17, 7462–7470 (1997).

    Article  CAS  Google Scholar 

  43. Minami, T. et al. Involvement of primary afferent C-fibres in touch-evoked pain (allodynia) induced by prostaglandin E2 . Eur. J. Neurosci. 11, 1849–1856 (1999).

    Article  CAS  Google Scholar 

  44. Nishihara, I., Minami, T., Watanabe, Y., Ito, S. & Hayaishi, O. Prostaglandin E2 stimulates glutamate release from synaptosomes of rat spinal cord. Neurosci. Lett. 196, 57–60 (1995).

    Article  CAS  Google Scholar 

  45. Liebel, J. T., Swandulla, D. & Zeilhofer, H. U. Modulation of excitatory synaptic transmission by nociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord. Br. J. Pharmacol. 121, 425–432 (1997).

    Article  CAS  Google Scholar 

  46. Dodt, H.-U. & Zieglgänsberger, W. Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci. 17, 453–458 (1994).

    Article  CAS  Google Scholar 

  47. Ceranik, K. et al. A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J. Neurosci. 17, 5380–5394 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Deutsche Forschungsgemeinschaft (SFB 353/A8 to H.U.Z. and SFB/B15 to W.L.N.) and a stipend from the Graduiertenkolleg GRK 22 to S.L. The authors thank C.-M. Becker, K. Brune and P.W. Reeh for critically reading the manuscript and S. Gabriel, K. Löschner and H. Symowski for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Ulrich Zeilhofer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, S., Lippross, S., Neuhuber, W. et al. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci 5, 34–40 (2002). https://doi.org/10.1038/nn778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing