Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Delivery materials for siRNA therapeutics

Abstract

RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery materials aim to overcome, as well as a discussion of the way that the most effective and clinically advanced classes of siRNA delivery systems, including lipid nanoparticles and siRNA conjugates, are designed to surmount these challenges. The systems that we discuss are diverse in their approaches to the delivery problem, and provide valuable insight to guide the design of future siRNA delivery materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA interference.
Figure 2: Common RNA-backbone modifications.
Figure 3: Cyclodextrin polymer nanoparticles.
Figure 4: Lipid structures and shapes.
Figure 5: DPC conjugates.
Figure 6: GalNAc–siRNA conjugates.
Figure 7: Self-assembly of oligonucleotide nanoparticles.

Similar content being viewed by others

References

  1. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  2. Okumura, A., Pitha, P. M. & Harty, R. N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl Acad. Sci. USA 105, 3974–3979 (2008).

    Article  CAS  Google Scholar 

  3. Alnylam RNAi Roundtable: Conjugate Delivery (2012); http://www.alnylam.com/capella/wp-content/uploads/2012/12/ALNY-RNAiRoundtable-ConjugateDelivery-Dec-14-2012.pdf

  4. Shen, H., Sun, T. & Ferrari, M. Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther. 19, 367–373 (2012).

    Article  CAS  Google Scholar 

  5. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    Article  CAS  Google Scholar 

  6. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  Google Scholar 

  7. Singha, K., Namgung, R. & Kim, W. J. Polymers in small-interfering RNA delivery. Nucleic Acid Therapeut. 21, 133–147 (2011).

    Article  CAS  Google Scholar 

  8. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nature Biotechnol. 28, 172–176 (2010).

    Article  CAS  Google Scholar 

  9. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569 (2008).

    Article  CAS  Google Scholar 

  10. Mo, R. H., Zaro, J. L. & Shen, W.-C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol. Pharm. 9, 299–309 (2012).

    Article  CAS  Google Scholar 

  11. Yao, Y. et al. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci. Transl. Med. 4, 130ra48 (2012).

    Article  Google Scholar 

  12. Dassie, J. P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature Biotechnol. 27, 839–849 (2009).

    Article  CAS  Google Scholar 

  13. Neff, C. P. et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci. Transl. Med. 3, 66ra6 (2011).

    Article  CAS  Google Scholar 

  14. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  15. Thomas, M. et al. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues. Ann. NY Acad. Sci. 1175, 32–39 (2009).

    Article  CAS  Google Scholar 

  16. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  17. Nishina, K. et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16, 734–740 (2008).

    Article  CAS  Google Scholar 

  18. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  CAS  Google Scholar 

  19. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature Rev. Drug Discovery 9, 615–627 (2010).

    Article  CAS  Google Scholar 

  20. Kanasty, R. L., Whitehead, K. A., Vegas, A. J. & Anderson, D. G. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol. Ther. 20, 513–524 (2012).

    Article  CAS  Google Scholar 

  21. Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  Google Scholar 

  22. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Rev. Drug Discov. 9, 57–67 (2010).

    Article  CAS  Google Scholar 

  23. Nguyen, D. N. et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl Acad. Sci. USA 109, E797–E803 (2012).

    Article  CAS  Google Scholar 

  24. Deleavey, G. F., Watts, J. K. & Damha, M. J. in Current Protocols in Nucleic Acid Chemistry (ed. Beaucage, S. L. et al.) Ch. 16, Unit 16.3 (2009).

    Google Scholar 

  25. Whitehead, K. A., Dahlman, J. E., Langer, R. S. & Anderson, D. G. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng. 2, 77–96 (2011).

    Article  CAS  Google Scholar 

  26. Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012).

    Article  CAS  Google Scholar 

  27. Malek, A. et al. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol. 236, 97–108 (2009).

    Article  CAS  Google Scholar 

  28. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnol. 25, 1149–1157 (2007).

    Article  CAS  Google Scholar 

  29. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  Google Scholar 

  30. Romberg, B., Hennink, W. E. & Storm, G. Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25, 55–71 (2008).

    Article  CAS  Google Scholar 

  31. Bazile, D. et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84, 493–498 (1995).

    Article  CAS  Google Scholar 

  32. Jarad, G. & Miner, J. H. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 18, 226–232 (2009).

    Article  Google Scholar 

  33. Wartiovaara, J. et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. Filtration 114, 1475–1483 (2004).

    CAS  Google Scholar 

  34. He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992).

    Article  CAS  Google Scholar 

  35. Huang, Y. et al. Elimination pathways of systemically delivered siRNA. Mol. Ther. 19, 381–385 (2011).

    Article  CAS  Google Scholar 

  36. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotech. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  37. Rozema, D. B. et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl Acad. Sci. USA 104, 12982–12987 (2007).

    Article  CAS  Google Scholar 

  38. Zuckerman, J. E., Choi, C. H. J., Han, H. & Davis, M. E. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA 109, 3137–3142 (2012).

    Article  CAS  Google Scholar 

  39. Naeye, B. et al. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials 34, 2350–2358 (2013).

    Article  CAS  Google Scholar 

  40. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circul. Res. 100, 158–173 (2007).

    Article  CAS  Google Scholar 

  41. Wisse, E., Jacobs, F., Topal, B., Frederik, P. & De Geest, B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15, 1193–1199 (2008).

    Article  CAS  Google Scholar 

  42. Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconj. Chem. 21, 797–802 (2010).

    Article  CAS  Google Scholar 

  43. Yu, B., Zhao, X., Lee, L. J. & Lee, R. J. Targeted delivery systems for oligonucleotide therapeutics. AAPS J. 11, 195–203 (2009).

    Article  CAS  Google Scholar 

  44. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotech. 8, 137–143 (2013).

    Article  CAS  Google Scholar 

  45. Bolhassani, A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim. Biophys. Acta 1816, 232–246 (2011).

    CAS  Google Scholar 

  46. Shim, M. S. & Kwon, Y. J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 64, 1046–1059 (2012).

    Article  CAS  Google Scholar 

  47. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  48. Jeong, J. H., Mok, H., Oh, Y-K. & Park, T. G. siRNA conjugate delivery systems. Bioconj. Chem. 20, 5–14 (2009).

    Article  CAS  Google Scholar 

  49. Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6, 659–668 (2009).

    Article  CAS  Google Scholar 

  50. Gonzalez, H., Hwang, S. J. & Davis, M. E. New class of polymers for the delivery of macromolecular therapeutics. Bioconj. Chem. 10, 1068–1074 (1999).

    Article  CAS  Google Scholar 

  51. Hwang, S. J., Bellocq, N. C. & Davis, M. E. Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconj. Chem. 12, 280–290 (2001).

    Article  CAS  Google Scholar 

  52. Pun, S. H. et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconj. Chem. 15, 831–840 (2004).

    Article  CAS  Google Scholar 

  53. Pun, S. H. & Davis, M. E. Development of a nonviral gene delivery vehicle for systemic application. Bioconj. Chem. 13, 630–639 (2002).

    Article  CAS  Google Scholar 

  54. Reineke, T. M. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 1. Carbohydrate size and its distance from charge centers. Bioconj. Chem. 14, 247–254 (2003).

    Article  CAS  Google Scholar 

  55. Popielarski, S. R., Mishra, S. & Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconj. Chem. 14, 672–678 (2003).

    Article  CAS  Google Scholar 

  56. Davis, M. et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem. 11, 179–197 (2004).

    Article  CAS  Google Scholar 

  57. Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65, 8984–8992 (2005).

    Article  CAS  Google Scholar 

  58. Mishra, S., Heidel, J. D., Webster, P. & Davis, M. E. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release 116, 179–191 (2006).

    Article  CAS  Google Scholar 

  59. Bartlett, D. W. & Davis, M. E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconj. Chem. 18, 456–468 (2007).

    Article  CAS  Google Scholar 

  60. Mishra, S., Webster, P. & Davis, M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111 (2004).

    Article  CAS  Google Scholar 

  61. Bellocq, N. C., Pun, S. H., Jensen, G. S. & Davis, M. E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconj. Chem. 14, 1122–1132 (2003).

    Article  CAS  Google Scholar 

  62. Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34, 322–333 (2006).

    Article  CAS  Google Scholar 

  63. Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104, 15549–15554 (2007).

    Article  CAS  Google Scholar 

  64. Bartlett, D. W. & Davis, M. E. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99, 975–985 (2008).

    Article  CAS  Google Scholar 

  65. Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl Acad. Sci. USA 104, 5715–5721 (2007).

    Article  CAS  Google Scholar 

  66. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  67. Alabi, C., Vegas, A. & Anderson, D. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Curr. Opin. Pharmacol. 12, 427–433 (2012).

    Article  CAS  Google Scholar 

  68. Burnett, J. C., Rossi, J. J. & Tiemann, K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol. J. 6, 1130–1146 (2011).

    Article  CAS  Google Scholar 

  69. Xu, Y. & Szoka, F. C. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623 (1996).

    Article  CAS  Google Scholar 

  70. Zhang, S., Zhi, D. & Huang, L. Lipid-based vectors for siRNA delivery. J. Drug Target. 20, 724–735 (2012).

    Article  CAS  Google Scholar 

  71. Kesharwani, P., Gajbhiye, V. & Jain, N. K. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 33, 7138–7150 (2012).

    Article  CAS  Google Scholar 

  72. Huang, L. & Liu, Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng. 13, 507–530 (2011).

    Article  CAS  Google Scholar 

  73. Sato, Y. et al. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release 163, 267–276 (2012).

    Article  CAS  Google Scholar 

  74. Bottega, R. & Epand, R. M. Inhibition of protein kinase C by cationic amphiphiles. Biochemistry 31, 9025–9030 (1992).

    Article  CAS  Google Scholar 

  75. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  Google Scholar 

  76. Mahon, K. P. et al. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery. Bioconj. Chem. 21, 1448–1454 (2010).

    Article  CAS  Google Scholar 

  77. Zhang, J., Fan, H., Levorse, D. A. & Crocker, L. S. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions. Langmuir 27, 1907–1914 (2011).

    Article  CAS  Google Scholar 

  78. Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).

    Article  CAS  Google Scholar 

  79. Hafez, I. M., Ansell, S. & Cullis, P. R. Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids. Biophys. J. 79, 1438–1446 (2000).

    Article  CAS  Google Scholar 

  80. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article  CAS  Google Scholar 

  81. Zuhorn, I. S. et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol. Ther. 11, 801–810 (2005).

    Article  CAS  Google Scholar 

  82. Zhigaltsev, I. V., Maurer, N., Wong, K. F. & Cullis, P. R. Triggered release of doxorubicin following mixing of cationic and anionic liposomes. Biochim. Biophys. Acta 1565, 129–135 (2002).

    Article  CAS  Google Scholar 

  83. Koltover, I. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).

    Article  CAS  Google Scholar 

  84. Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  CAS  Google Scholar 

  85. Bao, Y. et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res. 30, 342–351 (2013).

    Article  CAS  Google Scholar 

  86. Kolli, S. et al. pH-Triggered nanoparticle mediated delivery of siRNA to liver cells in vitro and in vivo. Bioconj. Chem. 24, 314–332 (2013).

    Article  CAS  Google Scholar 

  87. Lin, S-Y. et al. Sterically polymer-based liposomal complexes with dual-shell structure for enhancing the siRNA delivery. Biomacromolecules 13, 664–675 (2012).

    Article  CAS  Google Scholar 

  88. Virtanen, J. A., Ruonala, M., Vauhkonen, M. & Somerharju, P. Lateral organization of liquid-crystalline cholesterol-dimyristoylphosphatidylcholine bilayers. Evidence for domains with hexagonal and centered rectangular cholesterol superlattices. Biochemistry 34, 11568–11581 (1995).

    Article  CAS  Google Scholar 

  89. Takahashi, H., Sinoda, K. & Hatta, I. Effects of cholesterol on the lamellar and the inverted hexagonal phases of dielaidoylphosphatidylethanolamine. Biochim. Biophys. Acta 1289, 209–216 (1996).

    Article  Google Scholar 

  90. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nature Biotechnol. 26, 431–442 (2008).

    Article  CAS  Google Scholar 

  91. Ishiwatari, H. et al. Treatment of pancreatic fibrosis with siRNA against a collagen-specific chaperone in vitamin A-coupled liposomes. Gut 62, 1328–1339 (2013).

    Article  CAS  Google Scholar 

  92. Yoshizawa, T., Hattori, Y., Hakoshima, M., Koga, K. & Maitani, Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur. J. Pharm. Biopharm. 70, 718–725 (2008).

    Article  CAS  Google Scholar 

  93. Feng, C. et al. Silencing of the MYCN gene by siRNA delivered by folate receptor-targeted liposomes in LA-N-5 cells. Ped. Surg. Int. 26, 1185–1191 (2010).

    Article  Google Scholar 

  94. Wan, K. et al. In vivo tumor imaging using a novel RNAi-based detection mechanism. Nanomedicine 8, 393–398 (2012).

    Article  CAS  Google Scholar 

  95. Tabernero, J. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3, 406–417 (2013).

    Article  CAS  Google Scholar 

  96. Alsina, M. et al. Open-label Extension Study of the RNAi Therapeutic ALN-VSP02 in Cancer Patients Responding to Therapy. American Society of Clinical Oncology Meeting (2012); http://www.alnylam.com/capella/wp-content/uploads/2012/06/ALN-VSP-ExtensionStudyPoster-ASCO-June2012-panel.pdf

    Google Scholar 

  97. Wakefield, D. H., Klein, J. J., Wolff, J. A. & Rozema, D. B. Membrane activity and transfection ability of amphipathic polycations as a function of alkyl group size. Bioconj. Chem. 16, 1204–1208 (2005).

    Article  CAS  Google Scholar 

  98. Lewis, D. Dynamic polyconjugates (DPC) technology: an elegant solution to the siRNA delivery problem (2006); http://www.arrowheadresearch.com/sites/default/files/udocs/Arrowhead_Research_Corporation-DPC_Technology_White_Paper.pdf

  99. Wong, S. C. et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Therapeut. 22, 380–390 (2012).

    Article  CAS  Google Scholar 

  100. Macron, D. Arrowhead presents preclinical data on HBV candidate, subcutaneous delivery tech. Gene Silencing News (2012); http://www.arrowheadresearch.com/sites/default/files/news/Gene_Silen_News_111612_reprint.pdf

  101. Rozema, D. B., Ekena, K., Lewis, D. L., Loomis, A. G. & Wolff, J. A. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconj. Chem. 14, 51–57 (2003).

    Article  CAS  Google Scholar 

  102. Wooddell, C. I. et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 21, 973–985 (2013).

    Article  CAS  Google Scholar 

  103. Biessen, E. A. et al. Synthesis of cluster galactosides with high affinity for the hepatic asialoglycoprotein receptor. J. Med. Chem. 38, 1538–1546 (1995).

    Article  CAS  Google Scholar 

  104. Rensen, P. C., Van Leeuwen, S. H., Sliedregt, L. A., van Berkel, T. J. & Biessen, E. A. Design and synthesis of novel N-acetylgalactosamine-terminated glycolipids for targeting of lipoproteins to the hepatic asialoglycoprotein receptor. J. Med. Chem. 47, 5798–5808 (2004).

    Article  CAS  Google Scholar 

  105. Baenziger, J. U. & Fiete, D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22, 611–620 (1980).

    Article  CAS  Google Scholar 

  106. Rensen, P. C. et al. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. J. Biol. Chem. 276, 37577–37584 (2001).

    Article  CAS  Google Scholar 

  107. Kallanthottathil, R. Conjugation strategies for in vivo siRNA delivery (2012); http://www.alnylam.com/capella/wp-content/uploads/2012/11/ALNY-OTS-Conjugate-Oct2012.pdf

  108. Smith, D., Schüller, V., Engst, C., Rädler, J. & Liedl, T. Nucleic acid nanostructures for biomedical applications. Nanomedicine 8, 105–121 (2013).

    Article  CAS  Google Scholar 

  109. Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature Nanotech. 6, 658–667 (2011).

    Article  CAS  Google Scholar 

  110. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  111. Xia, W. & Low, P. S. Folate-targeted therapies for cancer. J. Med. Chem. 53, 6811–6824 (2010).

    Article  CAS  Google Scholar 

  112. Gindy, M. E., Leone, A. M. & Cunningham, J. J. Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics. Expert Opin. Drug Deliv. 9, 171–182 (2012).

    Article  CAS  Google Scholar 

  113. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the service to the MIT community of the late Sean Collier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Anderson.

Ethics declarations

Competing interests

D.A. has a research grant with Alnylam Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanasty, R., Dorkin, J., Vegas, A. et al. Delivery materials for siRNA therapeutics. Nature Mater 12, 967–977 (2013). https://doi.org/10.1038/nmat3765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3765

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research