Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The liver X receptor gene team: Potential new players in atherosclerosis

Liver X receptors (LXRs) are sterol-responsive transcription factors that regulate expression of genes involved in cholesterol metabolism and homeostasis. Maintenance of normal cholesterol levels has implicated the involvement of LXR-induced genes in the pathophysiology of atherosclerosis. The modulation of LXRs or their downstream targets may provide alternative therapeutic strategies for the management of this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LXRs are essential in regulating expression of many proteins (blue boxes) involved in removing cholesterol from the body and reducing the risk of atherosclerosis.

D. Maizels

References

  1. LaRosa, J.C., He, J. & Vupputuri, S. Effect of statins on risk of coronary disease. J. Am. Med. Assoc. 282, 2340–2346 (1999).

    Article  CAS  Google Scholar 

  2. Evans, M. & Rees, A. The myotoxicity of statins. Curr. Opin. Lipidol. 13, 415–420 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Rong, J.X. & Fisher, E.A. High-density lipoprotein: Gene-based approaches to the prevention of atherosclerosis. Ann. Med. 32, 642–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Attie, A.D., Kastelein, J.P. & Hayden, M.R. Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J. Lipid Res. 42, 1717–1726 (2001).

    CAS  PubMed  Google Scholar 

  5. Zhang, Y. & Mangelsdorf, D.J. LuXuRies of lipid homeostasis: The unity of nuclear hormone receptors, transcription regulation, and cholesterol sensing. Mol. Interven. 2, 78–87 (2002).

    Article  CAS  Google Scholar 

  6. Zhang, Z. et al. Key regulatory oxysterols in liver: Analysis as Δ4-3-ketone derivatives by HPLC and response to physiological pertubations. J. Lipid Res. 42, 649–658 (2001).

    CAS  PubMed  Google Scholar 

  7. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Fu, X. et al. 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem. 276, 38378–38387 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Collins, J.L. et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J. Med. Chem. 45, 1963–1966 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Repa, J.J. et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289, 1524–1529 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Schultz, J.R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831–2838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sparrow, C.P. et al. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J. Biol. Chem. 277, 10021–10027 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Peet, D.J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Reardon, C.A. & Getz, G.S. Mouse models of atherosclerosis. Curr. Opin. Lipidol. 12, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Claudel, T. et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc. Natl. Acad. Sci. USA 98, 2610–2615 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joseph, S.B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 99, 7610–7616 (2002).

    Article  Google Scholar 

  17. Venkateswaran, A. et al. Human White/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. J. Biol. Chem. 275, 14700–14707 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Tangirala, R.K. et al. Identification of liver X receptors as inhibitors of atherosclerosis. Proc. Natl. Acad. Sci. USA 99, 11896–11901 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chawla, A. et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7, 161–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chinetti, G. et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Med. 7, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Laffitte, B.A. et al. Autoregulation of the human liver X receptor α promoter. Mol. Cell. Biol. 21, 7558–7568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whitney, K.D. et al. Liver X receptor (LXR) regulation of the LXRα gene in human macrophages. J. Biol. Chem. 276, 43509–43515 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Assmann, G., von Eckardstein, A. & Brewer, H.B. in The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2937–2960 (McGraw-Hill, New York, 2001).

    Google Scholar 

  27. Serfaty-Lacrosniere, C. et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 107, 85–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. van Dam, M.J. et al. Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: An observational study. Lancet 359, 37–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, N., Silver, D.L., Thiele, C. & Tall, A.R. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem. 276, 23742–23747 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Costet, P. Luo, Y. Wang, N., & Tall, A.R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 275, 28240–28245 (2000).

    CAS  PubMed  Google Scholar 

  31. Orsó, E. et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and Abc1-deficient mice. Nature Genet. 24, 192–196 (2000).

    Article  PubMed  Google Scholar 

  32. Aiello, R.J. et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol. 22, 630–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Van Eck, M. et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl. Acad. Sci. USA 99, 6298–6303 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singaraja, R.R. et al. Increased ABCA1 activity protects against atherosclerosis. J. Clin. Invest. 110, 35–42 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joyce, C.W. et al. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc. Natl. Acad. Sci. USA 99, 407–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Klucken, J. et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc. Natl. Acad. Sci. USA 97, 817–822 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Curtiss, L.K. & Boisvert, W.A. Apolipoprotein E and atherosclerosis. Curr. Opin. Lipidol. 11, 243–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Laffitte, B.A. et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. USA 98, 507–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Linton, M.F., Atkinson, J.B. & Fazio, S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267, 1034–1037 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Fazio, S. et al. Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc. Natl. Acad. Sci. USA 94, 4647–4652 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mak, P.A. et al. Regulated expression of the apoE/C-I/C-IV/C-II gene cluster in murine and human macrophages; a critical role for the nuclear receptors LXRα and LXRβ. J. Biol. Chem. 277, 31900–31908 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Goldberg, I.J. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37, 693–707 (1996).

    CAS  PubMed  Google Scholar 

  44. Zhang, Y., Repa, J.J., Gauthier, K. & Mangelsdorf, D.J. Regulation of lipoprotein lipase by the oxysterol receptors, LXRα and LXRβ. J. Biol. Chem. 276, 43018–43024 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Pentikäinen, M.O., Oksjoki, R., Öörni, K. & Kovanen, P.T. Lipoprotein lipase in the arterial wall. Arterioscler. Thromb. Vasc. Biol. 22, 211–217 (2002).

    Article  PubMed  Google Scholar 

  46. Fan, J. et al. Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 276, 40071–40079 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Shimada, M. et al. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase. Proc. Natl. Acad. Sci. USA 93, 7242–7246 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yagyu, H. et al. Overexpressed lipoprotein lipase protects against atherosclerosis in apolipoprotein E knockout mice. J. Lipid Res. 40, 1677–1685 (1999).

    CAS  PubMed  Google Scholar 

  49. Merkel, M. et al. Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J. Biol. Chem. 277, 7405–7411 (2002).

    Article  PubMed  Google Scholar 

  50. Rinninger, F. et al. Lipoprotein lipase mediates an increase in the selective uptake of high density lipoprotein-associated cholesteryl esters by hepatic cells in culture. J. Lipid Res. 39, 1335–1348 (1998).

    CAS  PubMed  Google Scholar 

  51. Zsigmond, E. et al. Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice. Hum. Gene Ther. 8, 1921–1933 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Babaev, V.R., Patel, M.B., Semenkovich, C.F., Fazio, S. & Linton, M.F. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J. Biol. Chem. 275, 26293–26299 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Wilson, K., Fry, G.L., Chappell, D.A., Sigmund, C.D. & Medh, J.D. Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein E knockout mice but not in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 21, 1809–1815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao, G. et al. Phospholipid transfer protein is regulated by liver X receptors in vivo. J. Biol. Chem.; published online August 9, 2002, doi:10.1074/jbc.M207187200.

  55. Luo, Y. & Tall, A.R. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J. Clin. Invest. 105, 513–520 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Tol, A. Phospholipid transfer protein. Curr. Opin. Lipidol. 13, 135–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Föger, B. et al. Plasma phospholipid transfer protein. Adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL. J. Biol. Chem. 272, 27393–27400 (1997).

    Article  PubMed  Google Scholar 

  58. Jaari, S. et al. Dynamic changes in mouse lipoproteins induced by transiently expressed human phospholipid transfer protein (PLTP): importance of PLTP in preβ-HDL generation. Comp. Biochem. Physiol. Part B 128, 781–792 (2001).

    Article  CAS  Google Scholar 

  59. van Haperen, R. et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler. Thromb. Vasc. Biol. 20, 1082–1088 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, X.-C. et al. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J. Clin. Invest. 103, 907–914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, X.-C. et al. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nature Med. 7, 847–852 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Plump, A.S. et al. Increased atherosclerosis in apoE and LDL receptor gene knockout-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler. Thromb. Vasc. Biol. 19, 1105–1110 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Dietschy, J.M. & Turley, S.D. Control of cholesterol turnover in the mouse. J. Biol. Chem. 277, 3801–3804 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Agellon, L.B., Drover, V.A.B., Cheema, S.K., Gbaguidi, G.F. & Walsh, A. Dietary cholesterol fails to stimulate the human cholesterol 7α-hydroxylase gene (CYP7A1) in transgenic mice. J. Biol. Chem. 277, 20131–20134 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Graf, G.A. et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J. Clin. Invest. 110, 659–669 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, M.-H., Lu, K. & Patel, S.B. Genetic basis of sitosterolemia. Curr. Opin. Lipidol. 12, 141–149 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Repa, J.J. et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J. Biol. Chem. 277, 18793–18800 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Plösch, T. et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X-receptor (LXR) is independent of ABCA1. J. Biol. Chem. 277, 33870–33877 (2002).

    Article  PubMed  Google Scholar 

  69. Yu, L. et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110, 671–680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McNeish, J. et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl. Acad. Sci. USA 97, 4245–4250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Groen, A.K. et al. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL. J. Clin. Invest. 108, 843–850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Drobnik, W. et al. ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology 120, 1203–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Murthy, S., Born, E., Mathur, S.N. & Field, F.J. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J. Lipid Res. 43, 1054–1064 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Wellington, C.L. et al. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Invest. 82, 273–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Repa, J.J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McDonnell, D.P. The molecular pharmacology of SERMs. Trends Endocrinol. Metab. 10, 301–311 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many primary references could not be included because of space limitations. D.J.M. is an investigator of the Howard Hughes Medical Institute. This work was supported by the Howard Hughes Medical Institute and the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mangelsdorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repa, J., Mangelsdorf, D. The liver X receptor gene team: Potential new players in atherosclerosis. Nat Med 8, 1243–1248 (2002). https://doi.org/10.1038/nm1102-1243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1102-1243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing